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Abstract

Mobile malware and mobile network attacks are becoming a significant threat that ac-
companies the increasing popularity of smart phones and tablets. Thus in this deliverable
we propose two anomaly detection algorithms that use traffic measurements and billing
meta(data) in order to identify malicious or misbehaving mobile devices. The first algo-
rithm is based on measuring various quantities describing the activity of a user, applying
different statistical methods to compute features that capture both instantaneous and
long term changes in behaviour, and using a random neural network to fuse the infor-
mation gathered from the individual features in order to detect anomalies in real-time.
The second approach uses graph based descriptors to model billing records, where ver-
tices in the graph represent users and services, while edges correspond to communication
events. Anomaly detection is then performed by extracting features from the graph, and
applying a supervised learning technique to discriminate between normal and anomalous
users. The proposed methods are evaluated on two datasets from our mobile network
simulator, representing threats that affect mobile users and networks.



1 Introduction

Mobile malware is emerging as a significant threat due to the increasing popularity of
smart phones and tablets, which now run fully-fledged operating systems on powerful
hardware and feature multiple interfaces and sensors. Personal computers (PCs) are
no longer the dominant computing platform, and in fact the global shipments of smart
phones alone have exceeded those of desktop computers since 2011 [18,19]. Further, with
the accelerated adoption of 4G technologies including mobile WiMAX and Long Term
Evolution (LTE), cellular devices will become the primary means of broadband Internet
access for many users around the world. Indeed, while 4G capable devices represent
only 0.9% of all global mobile connections observed in the Internet during 2012, they
already account for 14% of the mobile data traffic [2]. As more and more people move
from PCs to handheld devices, cyber criminals are naturally shifting their attention to
the mobile environment. This trend is fuelled by the availability of off-the-shelf malware
creation tools [14], and the proliferation of mobile software marketplaces which enable the
distribution of malicious applications to potentially millions of users [45]. Such mobile
malware can attempt to snoop and steal saleable information, generate revenue by calling
premium rate numbers, or perform other malicious activities that could directly impact
the availability and security of cellular networks.

1.1 Motivation

Despite this growing challenge, most operators have been reactive rather than proactive
towards these security threats [10] and investments in detection and mitigation tech-
niques specific to mobile networks were mostly implemented when a problem occurred.
However, there has been recently a growing interest among mobile carriers [12] and ven-
dors [49] to develop network based anomaly detection systems which offer a number of
advantages over client-side security solutions:

• Footprint: Network level analysis does not incur additional monitoring, processing,
storage or communication overhead to mobile devices which, although may have
sufficient computational power nowadays, are battery and bandwidth constrained.
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• Efficacy: Most users are not aware of the growing security risks with mobile de-
vices [11], while others may be reluctant to use traditional antivirus solutions
because of their inherent power-hungry characteristics, negative impact on per-
formance, and potential false positives caused by novel behaviour. Since large
scale malware infections pose a significant threat to the availability and security
of cellular networks, it is in the interest of operators to ensure that users are well
protected even if they are not security conscious.

• Agility and ease of deployment: It can be modified easily without requiring users
to install patches and updates, whereas an on-device solution must support a large
number of mobile operating systems and hardware platforms.

• Trustability: Network based detection is not vulnerable to exploits that allow mal-
ware to circumvent client-side security, but could be bypassed by stealthy attackers
concealing their activities to appear as normal users.

• Coverage: It provides a broad view of malicious activities within a carrier’s net-
work, enabling the detection of zero-day attacks that misuse detection technologies
would not recognise. Indeed, while some attacks could be detected by examining
per user behaviour, others become more visible when specific features are aggre-
gated across multiple users (e.g., data exfiltration attempts by a single server).
Furthermore, the operator’s access to charging data records (CDR) can facilitate
the detection of attacks that have direct impact on billing data. In this respect,
statistics extracted from billing information offer a new dimension in the analysis
of anomalies, but the approach is also limited in scope in the sense that it con-
siders only features related to billing and communication via the cellular network
while on-device security systems could benefit from monitoring other behavioural
data such as system calls, power consumption, keystrokes, and communication over
non-cellular interfaces.

Thus, analysis of mobile network traffic offers a complementary means for detecting
both user and network targeted attacks, which could be used in conjunction with other
NEMESYS client-side solutions such as the mobile honeypot [3, 4] and high interaction
honeyclient [5], in order to improve detection performance. These tools which operators
may deploy on their networks can constitute value-added services for communities of
users, in the same way that banks use profiling to reduce credit card fraud.

There are, however, two main drawbacks of existing network-side security mechanisms
which employ anomaly detection1. First, without proper and very specific training on

1Based on the experience of NEMESYS telecommunication partners.
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the real network, existing tools produce a significantly high rate of false alarms, so much
so that analysts usually prefer to switch them off. Second, the training process has to be
repeated at least each time a change occurs in the network, e.g. a device is substituted
or a new service is introduced, rendering the management cost of these solutions very
high.

1.2 Objective of the Deliverable

In this deliverable, we develop anomaly detection mechanisms that mobile network op-
erators (MNOs) may deploy in their networks in order protect their own infrastructure
and defend users against malware. The approach is based on the analysis of anonymised
CDR for both voice and Internet traffic, which are readily available to the operator and
used for billing purposes. Such approach is easier to implement in a mobile network
since it relies on the analysis of user plane (meta)data, in contrast to solutions that
require changes to some of the network components and/or protocols. Furthermore, we
address the aforementioned management overhead of network-side solutions by propos-
ing a method to automate the configuration of the algorithms’ parameters, for example
based on key performance indicators generated by the network equipment.

1.3 Outline of the Deliverable

The rest of this deliverable is structured as follows. Section 2 provides background about
the most common threats affecting mobile networks and users, and motivations for our
CDR based algorithms. Section 3 develops a framework for real-time detection using
random neural networks (RNN) [28,29], and presents experimental results validating the
accuracy of the approach in identifying mobile devices that are contributing to signalling
overloads. The results are complemented with a mathematical model that will allow us
to optimise the performance of the signalling based detector of D4.1 [6], when combined
with the present RNN algorithm as part of our future integration work. Section 4
describes an approach that utilises graph based descriptors to represent billing activities,
from which features are extracted and used in order to identify anomalous users in two
distinct scenarios: the above signalling storm, and SMS spam campaign. The datasets
used in this deliverable have been generated by extending the mobile network simulator
that we have developed within NEMESYS [6, 34], so as to include more realistic data
plane models in addition to the signalling protocols of mobile networks. Finally, we
provide our concluding remarks in section 5.
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2 Background

This section presents an overview of the main threats against mobile users and services,
and outlines the merits and limitations of existing anomaly detection approaches. The
analysis is intended to motivate the attack models and algorithms that are developed
later in the deliverable.

2.1 Network Level Threats and Mitigation

Mobile systems are challenged by mobile broadband requirements such as video stream-
ing including 3D and playback, together with machine to machine (M2M) and vehicular
communications. All these will demand a lower signalling overhead and better quality
of service (QoS) to short payloads, at much higher traffic volumes and bandwidth re-
quirements. The constant access to the cloud in order to offload, away from the mobile
devices, the energy and computation critical applications creates yet another need for
continuous and secure connectivity.

Unfortunately, mobile networks are vulnerable to signalling denial-of-service (DoS)
attacks which overload the control plane through small but frequent communications
that exploit vulnerabilities in the signalling procedures used, for example, in paging [59],
transport of SMS [26], service requests [65] and radio resource control (RRC) [8,56]. Such
attacks can be carried out either by compromising a large number of mobile devices,
or from the Internet by targeting a hit list of mobile devices through carefully timed
transmissions, and can seriously compromise the connections between a large set of
mobiles and the services to which they are connected or are trying to connect.

Since security and uninterrupted connectivity in all mobile applications will become
even more important, not just from the “nuisance” and QoS perspective, but also be-
cause it is expected that safety critical applications will transition to mobile devices and
away from special purpose private networks or the commonly used fixed sensor networks,
the whole issue of how network threats can be detected and mitigated will become even
more important. Safety critical applications that will be accessed via mobile networks
will include emergency management, smart metering, smart grid control, public trans-
portation control systems (including railways), and electric vehicle charging networks.

M2M applications will in particular be quite vulnerable to such attacks since they
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will not have the human-in-the-loop who can turn off a mobile when she sees something
strange going on. Thus significant efforts need to be made to better understand the
security liabilities and weaknesses of mobile connections and find new approaches to
make them resilient and reliable in the face of malicious malware or malfunctioning
applications.

2.1.1 RRC based Signalling Overload

In the context of UMTS networks, bandwidth is managed by the RRC protocol which
associates a state machine with each user equipment (UE). There are typically four RRC
states, in order of increasing energy consumption: IDLE, Paging Channel (cell PCH),
low bandwidth Forward Access Channel (cell FACH), and high bandwidth Dedicated
Channel (cell DCH). We will refer hereafter to state cell X as X. State promotions are
triggered by uplink and downlink transmissions, and the move to FACH or DCH is
determined by the size of the radio link control (RLC) buffer of the UE: if at any time
the buffer exceeds a certain threshold in either direction, the state will be promoted
to DCH. State demotions in states DCH, FACH and PCH are triggered by inactivity
timers T1, T2 and T3, respectively. LTE implements a simpler RRC state machine with
two states: idle and connected. Frequent transitions between the RRC states can result
in excessive signalling load, in order to allocate and deallocate radio resources, leading
to performance degradations and outages. The RRC protocols in 3GPP standards are
described in detail in D4.1 [6].

A number of recent studies have addressed the question of whether RRC signalling
attacks are feasible in real networks, and three practical issues have been identified along
with possible methods for dealing with them:

• Inference of radio resource allocation policies: Signalling DoS attacks require knowl-
edge of the RRC policies used by the cellular operator, so that attack traffic could
inflict substantial load on the control plane. Probing techniques for inferring the
RRC state machine of operational networks have been developed in [13,52].

• Reachability and NAT traversal: Mobile operators deploy firewalls and Network
Address Translation (NAT) at network boundaries to protect their infrastructure
and mobile users from unsolicited traffic from the Internet, by hiding the entire
IP address space behind a single public IP address. This enables communication
through edge routers only when a mobile initiates the data session, and any attempt
by an external host to scan IP addresses inside the network will be unsuccessful.
The authors in [53, 67] develop a mobile application and a probing technique al-
lowing them to investigate middlebox policies used by 180 cellular carriers around
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the world. Among other findings, the study reveals that 51% of the operators
allow mobile devices to be probed from the Internet: some of them assign public
IP addresses to mobile devices while others use private ones but allow IP spoofing
or device-to-device probing within the network.

• Exposing locations of mobile devices: An attacker must be able to map IP addresses
of mobile devices to a geographic area in order to launch a signalling DoS attack
from the Internet. In [53], active probing is used to discover a combination of
static and dynamic features, such as inactivity timer and minimum round trip
time, enabling an attacker to identify a sufficient number of IP addresses in a
particular location. It is also found that 80% of mobile devices keep their IP
addresses for more than 4 hours, giving an attacker enough time to perform network
measurements.

In practice, however, signalling DoS attacks have not been observed, which is likely due to
lack of financial incentives for cyber criminals who would rather have the infrastructure
functional in order to launch profitable attacks. Nevertheless the threat cannot be
ignored as DoS attacks could be used, for example, to impair the competition or as a
form of protest (hacktivism).

Signalling storms are similar to signalling DoS attacks, but they are mainly caused by
misbehaving mobile applications that repeatedly establish and tear-down data connec-
tions [50] in order to transfer small amounts of data. Such “chatty” behaviour triggers
repeated signalling to allocate and deallocate radio channels and other resources, and
therefore has a negative impact on the control plane of the network [58]. There are a
number of recent high profile cases, e.g. in Korea [25] and Japan [27], where large opera-
tors suffered major outages due to popular applications that constantly poll the network
even when users are inactive. Ad based mobile monetisation is another culprit, shown to
cause erratic spikes in signalling traffic [24]. Many mobile carriers have also reported [10]
outages and performance issues caused by non-malicious but poorly designed applica-
tions, yet the majority of those affected followed a reactive approach to identify and
mitigate the problem. It is expected that signalling storms will continue to pose chal-
lenges to operators, with the projected growth in mobile data [22] and the advent of M2M
systems for which existing cellular networks are not optimised [1, 41, 60, 63]. Signalling
storms could also occur as a byproduct of malicious activities that involve frequent com-
munications. Indeed, a recent analysis of the traffic profiles of mobile subscribers in
China [44] indicated a positive correlation between the frequency of resource-inefficient
traffic and malicious activities in the network such as private data upload, billing fraud
and TCP SYN flooding.
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2.1.2 Existing Countermeasures

Signaling problems in mobile networks have a limited impact on the data plane and thus
are difficult to detect using traditional intrusion detection systems which are effective
against flooding type attacks. For Internet based attacks, a change detection algorithm
using the cumulative sum method has been proposed in [42], where the signaling rate
of each remote host is monitored and an alarm is triggered if this rate exceeds a fixed
threshold. The use of a single threshold for all users, however, presents a trade-off
between false positives and detection time, which can be difficult to optimise given the
diversity of users’ behaviour and consumption.

A supervised learning approach is used in [35] to detect mobile-initiated signalling
attacks, whereby transmissions that trigger a radio access bearer setup procedure are
monitored, and various features are extracted relating to destination IP and port num-
bers, packet size, and response-request ratio. In this deliverable, we develop algorithms
to detect signalling anomalies using only billing-related information, thus simplifying
their deployment in the network. Furthermore, the methods proposed in this deliverable
can be integrated with the signalling based solution of D4.1 [6], so as to improve the
overall detection performance of the system. The work in [39] considers the detection of
SMS flooding attacks using low reply rate as the main indicator of malicious activities,
which is likely to misclassify SMS accounts used for M2M communications, such as asset
tracking and smart grid metering [48].

A general framework for anomaly detection is presented in [23], where time-series of
one dimensional feature distributions are derived and change detection algorithms are
applied to identify statistically significant deviations from past behaviour. While the
method in [23] aims to identify large scale events by aggregating and analysing statistics
from all mobile users, our algorithm in Section 3 follows a different approach whereby
it is activated and configured based on key performance indicators (KPIs) (e.g. when
signalling load exceeds a certain threshold), and as such it does not need to operate
continuously. Furthermore, the aim of our method is to identify in real-time the users
that are contributing to a problem rather than detect the problem itself. Nevertheless,
we also develop in Section 4 a graph based algorithm that can be executed periodically in
order to detect stealthy but non-critical malicious campaigns that may not affect KPIs
in the mobile network.

2.2 Attacks Against Mobile Users

A recent report by Kaspersky Lab [46] revealed that the most frequently detected mal-
ware threats affecting Android operating system are (i) SMS Trojans which send mes-

16



sages without users’ consent, (i) adware which displays unwanted advertisements, and
(iii) root exploits which allow the installation of other malware or the device to become
part of a botnet. While botnets are a well-known phenomenon in the wired Internet,
the year 2012 saw the emergence of the first mobile botnets [47]. Mobile botnets pose
interesting questions as to their capabilities and uses since smart mobile devices possess
many abilities not present on a desktop computer. Such mobile botnets could be used
to attack mobile users, e.g. SMS spam, which in turn may have a serious impact on the
network functioning as described earlier. In the following, we discuss two approaches to
deploying anomaly detection systems at the operator’s network, and we review existing
techniques that have been proposed in the literature.

2.2.1 Network based Detection

Recent work [43] has shown that mobile malware families are not different from their
non-cellular counterparts, in the sense that they rely on the same Internet infrastructure
to support their illicit operations, and share many behavioural characteristics such as
host changes, growth patterns and so on. Thus traditional network based solutions which
have been applied successfully in the wired domain could be also effective in detecting
and mitigating mobile threats. The literature includes a number of proposals for enabling
mobile operators to detect user targeted attacks:

• DNS analysis: Since malware typically uses DNS to retrieve IP addresses of servers,
detecting and blacklisting suspicious domains can be a first step towards limiting
the impact of malware [36, 43]. However, detection should not be based solely on
historical data (i.e. known malicious domains), but also on behavioural character-
istics that may differentiate normal and malicious traffic.

• Content matching: Uncommon header flags and syntactic matches in HTTP mes-
sages can be used as indicators of data exfiltration attempts [36], but this approach
is not effective when end-to-end encryption is used, as it relies on extracting infor-
mation from plain-text transmissions, and it also requires performing deep packet
inspection (DPI) which may not be scalable.

• CDR analysis: One of the key characteristics of mobile communications pertains to
the fact that the whole extent of exchanged traffic load is continuously monitored
for billing and accounting purposes. Hence, it is expected that many malicious
activities will have an evident impact on the CDR of the parties involved. In [48],
communication patterns of SMS spammers are compared to those of legitimate
mobile users and M2M connected appliances, showing evidence of spammer mo-
bility, voice and data traffic resembling the behaviour of normal users, as well as
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similarities between spammers and M2M communication profiles. Fuzzy-logic is
used in [66] to detect SMS spamming botnets by exploiting differences in usage
profiles, while in [68] SMS anomalies are detected through building normal social
behaviour profiles for users, but the learning technique fails to identify transient
accounts used only for malicious purposes. The work in [38] uses a bi-partite graph
to represent voice calls from domestic to international numbers, and proposes a
Markov clustering algorithm to detect and classify voice-related fraud; the analysis
shows that different fraud activities, such as those carried by malicious applica-
tions with automated dialler or through social engineering tactics, exhibit distinct
characteristics.

A somewhat different approach that can be used by operators to identify malware offers a
trade-off between network-level analysis and on-device security: the former imposes zero-
load on the device but limits its scope to cellular data, while the latter is able to utilise
internal mobile events for detection but may be resource hungry. This hybrid approach
uses a thin mobile client to extract relevant features from the device [17, 57] which are
then offloaded to the network or the cloud for inspection. Although this approach offers
heavy-weight security mechanisms to devices that may not otherwise have the processing
power to run them, it still requires continuous monitoring, some processing and frequent
communication with a remote service. Moreover, this approach can only protect those
users that install a security application, and requires a large number of subscribers in
order to identify large-scale events, while network based detection does not require the
user to do anything as all detection is performed using data available to the network
operator.
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3 RNN based Online Anomaly Detection

In this section we present a random neural network (RNN) [28, 29] based algorithm for
detecting mobile signalling anomalies in real-time using charging data records (CDR).
The algorithm uses supervised learning to distinguish between normal and abnormal
behaviour, and is able to identify quickly when a mobile device generates excessive control
messages without directly monitoring the signalling plane. In contrast to signalling based
solutions which would require modification to cellular network equipment or protocols,
the algorithm is designed to run on the core network using standard monitoring tools.
Our motivation behind the use of a supervised learning approach is that it is suited
for detecting threats that are well-understood, which include signalling storms whose
characteristics and root causes have been analysed thoroughly in D4.1 [6].

The rest of this section is structured as follows. In section 3.1 we give a brief summary
of the RNN model as applied to our problem of distinguishing between normal and
misbehaving mobile devices. Section 3.2 presents the core of the detection technique,
including the decision making process, and provides a detailed description of the choice of
input features, and the parameters that can influence the performance of the algorithm.
In section 3.3, we evaluate our detection mechanism using data generated by the mobile
network simulator developed within NEMESYS; we describe the user and attack models,
and present some experimental results. Then section 3.4 presents a mathematical model
for evaluating and optimising the performance of our algorithm when used in conjunction
with the signalling based detector developed in D4.1. Finally, we summarise our findings
in section 3.5.

3.1 Background

The RNN is a biologically inspired computational model, introduced by Gelenbe [28],
in which neurons exchange signals in the form of spikes of unit amplitude. In RNN,
positive and negative signals represent excitation and inhibition respectively, and are
accumulated in neurons. Positive signals are cancelled by negative signals, and neurons
may fire if their potential is positive. A signal may leave neuron i for neuron j as a
positive signal with probability p+ij , as a negative signal with probability p−ij , or may

depart from the network with probability di, where
∑

j [p
+
ij + p−ij ] + di = 1. Thus, when
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neuron i is excited, it fires excitatory and inhibitory signals to neuron j with rates:

w+
ij = rip

+
ij ≥ 0, w−ij = rip

−
ij ≥ 0,

where:
ri = (1− di)−1

∑
j

[w+
ij + w−ij ].

The steady-state probability that neuron i is excited is given by qi = Ni
Di

where:

Ni = Λi +
∑
j

qjw
+
ji, Di = λi + ri +

∑
j

qjw
−
ji

with Λi and λi denoting the rates of exogenous excitatory and inhibitory signal inputs
into neuron i, respectively.

A gradient descent supervised learning algorithm for the recurrent RNN has been
developed in [29]. For a RNN with n neurons, the learning algorithm estimates the
n × n weight matrices W+ = {w+

ij} and W={w−ij} from a training set comprising
K input-output pairs (X,Y). The set of successive inputs to the algorithm is X =
(x(1), · · · ,x(K)), where x(k) = (Λ(k), λ(k)) are the pairs of exogenous excitatory and
inhibitory signals entering each neuron from outside the network:

Λ(k) = (Λ
(k)
1 , · · · ,Λ(k)

n ), λ(k) = (λ
(k)
1 , · · · , λ(k)n ).

The successive desired outputs are Y = (y(1), · · · ,y(K)), where the k-th vector y(k) =

(y
(k)
1 , · · · , y(k)n ), whose elements y

(k)
i ∈ [0, 1] correspond to the desired output values for

each neuron. The training examples are presented to the network sequentially, and the
weights are updated according to the gradient descent rule to minimise an error function:

E(k) =
1

2

n∑
i=1

ai[q
(k)
i − y

(k)
i ]2, ai ≥ 0.

The update procedure requires a matrix inversion operation for each neuron pairs (i, j)
and input k which can be done in time complexity O(n3), or O(mn2) if m-step relaxation
method is used, and O(n2) for feed-forward networks. The RNN has been successfully
applied to several engineering problems [64] including pattern recognition, classification
and DoS attack detection [32,51].
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3.2 Detection of Signalling Anomalies

The RNN based anomaly detection algorithm monitors the activity of each user, and
measures a set of expressive features that describe various characteristics of the user’s
behaviour. Time is divided into slots, each of duration ∆ seconds, in which sum-
mary statistics such as the mean and standard deviation of several quantities related
to the activity of the user are collected. The algorithm stores the most recent w set of
measurements, and use them to compute the current values of the input features; i.e.
the features for time slot τ are computed from measurements obtained for time slots
τ, τ − 1, · · · , τ − (w − 1) so that the observation window of the algorithm is W = w∆.
We discuss in section 3.2.2 the selection of the algorithm’s parameters and how they
influence its performance.

Let z[τ ] denotes a measured or calculated quantity for time slot i, then the i-th input
feature xi[τ ] can be obtained by applying a statistical function fi as follows:

xi[τ ] = fi(z[τ ], z[τ − 1], · · · , z[τ − w − 1]).

Hence, by employing different operators fi on different statistics z stored for the obser-
vation window of w slots, it is possible to capture both instantaneous (i.e. sudden) and
long-term changes in the traffic profile of a user. In our work, we have used a number
of simple statistical functions such as the mean and standard deviation of z across the
entire window, and also an exponential moving average filter in which the current feature
is computed as:

xi[τ ] = αxi[τ − 1] + (1− α)z[τ ],

where α is some constant 0 < α < 1 typically close to 1, with higher values discount-
ing older observations faster. An important concept from information theory that we
have also used in our approach is entropy which is a measure of the uncertainty or
unpredictability in the data:

xi[τ ] = −
τ∑

t=τ−w−1
pz[t] log pz[t],

where pz[t] is the probability of observing data item z[t] within the window, which can
be estimated from the histogram of the data. Entropy is typically interpreted as the
minimum number of bits required to encode the classification of a data item, thus a
small entropy indicates deterministic behaviour which is often associated with signalling
anomalies [27,44,54].

Once the input features for a slot have been computed, they are fused using a trained
feed-forward RNN architecture such as the one presented in Fig. 3.1 to yield the final
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Figure 3.1: An example of the feed-forward RNN structure used for anomaly detection,
with 8 input nodes, 5 hidden neurons and 2 output nodes corresponding
to attack and normal traffic. The learning algorithm processes the input
training patterns in sequence and updates the weights. The k-th training

set consists of a feature vector x(k) = (Λ
(k)
1 , · · · ,Λ(k)

8 ) and its classification

y(k) = (y
(k)
14 , y

(k)
15 ) set to (1, ε) for attack and (ε, 1) for normal samples where

ε ' 0. All other exogenous signals are set to zero.

decision: the input neurons receive the features computed for the current time slot, and
the output nodes correspond to the probabilities of the input pattern belonging to any
of two traffic classes (i.e. attack or normal). The final decision about the traffic observed
in the time slot is determined by the ratio of the two output nodes (i.e. q14/q15): attack
if the ratio is greater than 1 and normal otherwise. We have used an implementation of
the RNN provided in [7].

3.2.1 Feature Selection

The selection of useful and information bearing input features for any classification prob-
lem is one of the most important parts of the solution. In our approach, we used features
that can capture the RRC signalling dynamics of a user based on raw IP packet traces
collected from the mobile network core, namely the SGSN/GGSN in UMTS and SG-
W/PGW in LTE. Our aim is to select features that are easy to measure or calculate
without high computational or storage cost, given the sheer size of the mobile net-
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work, while at the same time reflect both the instantaneous behaviour and the longer
term statistical properties of the traffic. We extract for each UE information related to
inter-arrival times, lengths and destination IP addresses of packets. We do not assume
knowledge of the application generating a packet nor its service type, which would re-
quire the use of a commercial deep packet inspection (DPI) tool, and would result in
considerable overhead for real-time detection. The features that we have used in our
detection mechanism are described below.

Inter-arrival Times

RRC signalling occurs whenever the UE sends or receives packets after an inactivity
period that exceeds an RRC timer. Thus, the volume of traffic exchanged by a UE
does not map directly into signalling load which is more influenced by the frequency of
intermittent activities. To capture this interaction between the data and RRC control
plane, we define a burst as a collection of packets whose inter-arrival times are less than
δ seconds, where δ is smaller than the RRC timers, typically in the order of few seconds.
Specifically, for a sequence of packets whose arrival instants are {t1, t2, · · · }, we group
all packets up to the n-th arrival into a single burst, where n = inf{i : ti− ti−1 > δ}, and
then proceed in a similar manner starting from the (n+ 1)-th packet arrival. Note that
packets within a single burst are likely not to trigger any control plane messages, while
inter-arrival times of bursts will be correlated to the actual signalling load generated
by the UE. In this manner, we remove any bias regarding the volume of traffic sent or
received by the UE, and focus more on the frequency of potentially resource-inefficient
communications.

The features based on the times between bursts are then calculated as follows. The
algorithm stores the mean and standard deviation of the inter-burst times in each slot
then, using the most recent w values, it computes (i) entropy of the averages, (ii) moving
average of the standard deviations, and (iii) moving average of an anomaly score for the
averages computed based on the RRC timer T in the high bandwidth state. In particular,
the anomaly score α(z[t]) of the average inter-burst time in slot t is set to zero when
z[t] < T , reflecting the fact that such shortly spaced bursts may not have generated many
RRC transitions; it is high when z[t] is slightly larger than T , indicating potentially
resource-inefficient bursts; and it drops quickly when z[t] is few seconds larger than T .
We can obtain this effect using a gamma distribution:

α(z[t]) =
(z[t]− T − ε)n−1e−

(z[t]−T−ε)
θ

θnΓ(n)
,

where Γ(n) is the gamma function evaluated at n, ε is a small positive number and
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Figure 3.2: Anomaly score based on the gamma function, taking high values when the
time between successive bursts is slightly larger than the RRC timer which
in this case is 6s.

n, θ are parameters of the gamma distribution chosen to adjust the decay of α as z − T
increases. The shape in Fig. 3.2 which satisfies the above requirements is obtained by
setting n = 1.5 and θ = 1.

Packet Size

If the data sent by a user has a probabilistic description, then it is expected that the
packet size distribution for a normal device will be markedly different from that of a
mobile device running a misbehaving application. For example, signalling storms can be
caused by failures in over-the-top cloud services [54] or peer-to-peer networks used by
VoIP applications [23]. In such cases, the client application will attempt to reconnect
more frequently, causing significant increase in the number of TCP SYN packets sent by
the user. This in turn changes the randomness or uncertainty of information associated
with the size of packets, and can be used to identify misbehaving mobiles in the event
of a signalling storm. Our algorithm computes the average size of packets sent by a
UE within each slot, and evaluates a feature based on the entropy of the most recent w
measurements.
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Burst Rate

Another obvious characteristic of signalling storms is the sudden increase and sustained
rate of potentially harmful bursts generated by a misbehaving user. Moving average
of the burst rate per slot and entropy of the rates across the observation window are
used as features in order to capture, respectively, the frequent and repetitive nature of
nuisance transmissions. Furthermore, a misbehaving application may change the traffic
profile of a user in terms of the ratio of received and sent bursts, as in the case of
the outage induced storm described above where many SYN packets will not generate
acknowledgments. Hence, we also use as a feature the mean of the response ratios within
the window of w slots.

Destination Addresses

The number of destination IP addresses contacted by a normally functioning mobile
device is expected to be significantly different from that of an attacker [35], whether the
attack originates from the mobile network due to a misbehaving application, or from the
Internet as in the case of unwanted traffic (e.g. scanning probes, spam, etc.) reaching
the mobile network [55]. In the former, the number of destination IP addresses will be
unusually small relative to the frequency of bursts, while in the latter this number is
very high. Thus we calculate the percentage of unique destination IP addresses contacted
within each time slot, and use the average of the most recent w values as a feature.

3.2.2 Selecting the Parameters of the Algorithm

In the following, we summarise the parameters for the RNN algorithm and discuss how
they should be selected adaptively and how the choice of each parameter influences the
performance of the anomaly detector:

• Slot size ∆: This defines the resolution of the algorithm and the frequency at
which classification decisions are made. It should be long enough for the measured
statistical information to be significant, but not too long to make the algorithm
react slowly to attacks. In our experiments we set ∆ = 1 minute.

• Window size W : The window size W = w∆ determines the amount of historical
information to be included in a classification decision. The choice of the window
size presents a trade-off between speed of detection and false alarm rate, since a
small window makes the algorithm more sensitive to sudden changes in the traffic
profile of a user, which in turn increases both detection and false alarm rates. This
trade-off can be optimised by adjusting W according to the level of congestion in
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the control plane, with shorter windows for higher signalling loads to enable the
algorithm to quickly identify misbehaving UEs. Note that information about the
“health” of different network servers is typically available to the mobile network
operator in the form of key performance indicators (KPIs) that can be fed to
the algorithm to adjust the window size. Furthermore, based on these KPIs, the
anomaly detector could be switched on only when the signalling load exceeds a
certain threshold, thus eliminating the need to continually analyse users’ traffic.
The value of w used in our experimental results is 5, but we also experimented
with other values which confirmed the aforementioned observations.

• Maximum packet inter-arrival time within a burst δ: This should be selected based
on the RRC timers, so that potentially resource-inefficient transmissions can be
tracked. In our simulations of a UMTS network, the timers in DCH and FACH
states are set to, respectively, T1 = 6s and T2 = 12s based on [52]. We have
evaluated different values of δ < min(T1, T2) and the results indicate that it does
not affect detection performance significantly, but that training time drops as δ is
increased. The results presented in this deliverable are obtained with δ = 3s.

3.3 Experiments and Results

In this section, we evaluate the performance of our CDR based anomaly detection algo-
rithm. Towards this end, we have extended our simulator [6,34] to include more realistic
data plane models in addition to the signalling protocols of mobile networks. We first
present the traffic models that have been integrated into the simulations, including two
attack models that represent both malicious and misbehaving UEs. Then we describe
the results of applying our real-time algorithm on the dataset produced by the simulator.

While the impact of signalling storms on mobile networks has been analysed exten-
sively in [6], the objective of the present simulation setup is to evaluate the performance
of our algorithms in identifying signalling anomalies in users’ profiles; thus a small sce-
nario has been considered. In particular, we simulated 200 UEs in an area of 2x2 km2

which is covered by 7 Node Bs connected to a single radio network controller (RNC).
The core network (CN) consists of the SGSN and the GGSN which is connected to 37
Internet hosts acting as application servers, 5 of which for instant messaging, and 2 are
contacted by the attacking UEs.
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3.3.1 Model of the User

The user model consists of three popular mobile services that are active simultaneously
in order to create more realistic user behaviour. The model can also support a diurnal
pattern for UE behaviour, where the UE is active for a certain duration (e.g. between
14 and 16 hours) every 24 hours, and is inactive the rest of the time during which the
user does not generate or respond to traffic. This pattern represents the day/night cycle
of users, and it varies from one user to another based on a random distribution.

Web Browsing

The interactive web browsing behaviour is based on the self-similar traffic model de-
scribed in D4.1 [6] and assumes Zipf-like distribution for web server popularity, which
has been widely used in the literature since it was first suggested in [16].

Instant Messaging

Instant messaging (IM) applications are characterised by frequent, small data transmis-
sions and a long tail distribution representing messages with media rich contents such as
videos and photos. The IM application model consists of two distinct but related parts:
message generator and responder. Each UE generates messages to chosen destinations,
and also responds to received messages with a given probability. The message generator
works based on sessions and waves. A session represents the duration that the user is
actively generating messages, and consists of one or more waves where the messages
are actually sent. At each wave, the user generates and sends one or more messages,
the number and length of which are configurable with random distributions, to a single
destination (mobile user) chosen at random. The time between waves within a session,
the session duration and the time between user sessions are all given by random distri-
butions. On the other hand, the UE responds to each received message with a given
probability, and this response behaviour is independent of message generation, and can
occur both inside and outside of the user’s IM sessions.

The final destination of a message can be another mobile in the same network or a
mobile in another network (not explicitly simulated); mobiles in different networks are
represented by one or more servers in the simulation, which act on behalf of these users.
Mobiles in the same network are explicitly simulated. Regardless of its final destination,
each message passes through an Internet chat server, which forwards the message to its
final destination, i.e. another mobile user. We simulate multiple chat servers representing
popular chat applications and services such as WhatsApp, GTalk, Skype, etc., and
currently assume that each message belongs to a chat application that is chosen uniformly
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at random from the available applications. The simulation model supports more generic
message-to-application assignment based on other random distributions.

Short Message Service

The SMS application is similar to the IM application in that it consists of a message
generator and a responder, and also operates based on the same concept of sessions
and waves. Different from the IM application, we assume a single intermediate server
within the mobile network that handles all SMS messages for that network, i.e. the
SMSC server. SMS messages are also different than IM messages in their types. Each
SMS message is assigned a type at creation time, which can also be inferred from its
destination address (i.e. phone number); an SMS message can be classified as in-network
mobile, out-network mobile, premium, and other, e.g. non-premium SMS based services,
based on its destination. In-network mobiles are naturally represented by the UEs
explicitly simulated; we represent the out-network mobiles, premium numbers and other
destinations by servers outside the simulated mobile network, with one or more servers
representing each class. Therefore, the type of a sent or received SMS can be inferred
from its source and destination addresses (numbers). The type of the SMS message the
UE generates is chosen at random based on the parameters of the SMS application.

3.3.2 Attack Model

We consider DCH attacks where the attacker aims to overload the control plane by
causing superfluous promotions to the high bandwidth DCH state. A similar FACH
attack can be launched where the transition of interest is to the FACH state, which is
more effective in overloading the core network components such as SGSN (UMTS) and
MME (LTE), but it is generally more difficult to launch because it requires knowledge
of the RRC buffer thresholds and measurement of user traffic volume.

We consider two types of attackers. The first is aggressive in the sense that a malicious
device knows when an RRC state transition occurs, and launches the next attack once
a demotion from DCH to FACH is detected. To perform the attack, we assume that the
attacker has inferred the radio network configuration parameters, and is monitoring the
user’s activity in order to estimate when a transition occurs so as to trigger a new one
immediately afterwards. However, there could be an error between the actual transition
time and the estimated one, which we represent by an exponentially distributed random
variable with mean 2s. When the attacker “thinks” that a transition has occurred, it
sends a high data rate traffic to one of its Internet servers in order to cause the buffer
threshold to be reached and therefore result in a promotion to DCH. This model is used
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mainly for training the supervised anomaly detection algorithm.
The second attack type is based on a poorly designed application that sends periodic

messages whenever the user is inactive, with the transmission period set to be slightly
larger than the DCH timer in order to increase the chances of triggering state transi-
tions. This behaviour represents the case where an application uses a pull mechanism
to fetch updates periodically, and the update period happens to “synchronise” with the
RRC timer. However, unlike aggressive attackers, the misbehaving application cannot
guarantee the generation of signalling traffic for each of its updates, since (i) the appli-
cation only starts when local user activity stops but it cannot observe downlink traffic
that may have restarted the DCH timer at the signalling server; and (ii) the data volume
may not be large enough to trigger a promotion to DCH. In both cases, the periodic
transmissions may become completely out of sync with the RRC state machine, therefore
not generating any signalling traffic.

The two distinct attack models allow us to represent both malicious and benign be-
haviours that may lead to a storm, but the first is well distinguishable and separable
from the behaviour of a normal user in terms of both temporal and traffic volume. On
the other hand, the second attack model captures the signalling behaviour of legitimate
applications that are much more similar to an “attack” rather than to a “normal” be-
haviour, but are difficult to detect from CDR dynamics. Thus we use this model to test
the performance of our algorithm.

3.3.3 Results

The RNN algorithm provides at the end of a time slot the probabilities that the input
features belong to an attack and normal behaviour (i.e., q14 and q15 in Fig. 3.1). The
final decision about the traffic is then determined by the ratio of the two output nodes
q14/q15: it is classified as attack if the ratio is greater than 1 and normal otherwise.
Fig. 3.3 shows the classifier output (top) and the actual RRC state transitions (bottom)
of a misbehaving UE as captured during a simulation run. It can be observed that when
the malfunctioning application is active, the number of state transitions significantly
increases, with most transitions occurring between the FACH and DCH states in this
attack scenario. It is this back-and-forth transitioning behaviour that causes excessive
signalling load in the mobile network, while the load on the data plane is mostly unaf-
fected, rendering traditional flooding based security solutions unable to detect signalling
storms. However, our anomaly detection mechanism is able to track very accurately the
RRC state transitions of the UE, and to quickly identify when excessive signalling is
being generated, despite the fact that it does not directly monitor these transitions but
rather infers them from the CDR features that we have described. One can also observe
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Figure 3.3: Classifier output (top) and RRC state transitions (bottom) for a misbehaving
UE.

that the classifier’s output sometimes drops close to 1 during an attack epoch, which is
attributed to other normal applications generating traffic in those time instants, thus
reducing the severity of the attack. As mentioned earlier, the detection speed and toler-
ance to signalling misbehaviour can be adjusted by modifying the size of the observation
window, which in this scenario is set to 5 minutes.

Fig. 3.4 shows results when there is no attack, where the number of state transitions
in a given period are small and due to normal traffic generated and received by the UE.
In this case, the UE does not spend long periods in “active” states, i.e. FACH and
DCH, quickly transitioning down to Idle (bottom figure), and the classifier (top figure)
does not generate any alarms regarding the signalling behaviour of the UE as one would
expect.

Next we examine in Fig. 3.5 how our algorithm performs when presented with a heavy

30



0 50 100 150 200 250 300 350
10

−4

10
−2

10
0

Time (minutes)

C
la

ss
ifi

er
 o

ut
pu

t

0 50 100 150 200 250 300 350
Idle

FACH

DCH

Time (minutes)

R
R

C
 s

ta
te

threshold

Figure 3.4: Classifier output (top) and RRC state transitions (bottom) for a normal UE.
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Figure 3.5: Classifier output (top) and RRC state transitions (bottom) for a heavy UE
that generates significantly more signalling than the average user in the sim-
ulation experiment.

normal user that generates significantly more state transitions than the average normal
user in our simulations. Interestingly enough, the classifier outputs a single alarm (out
of 360 samples) when the corresponding state transitions are indeed excessive. Since the
anomaly detection algorithm is supposed to be activate only when there is a signalling
overload condition, such classification decisions may not always be considered as false
alarms, as the goal would be to identify users that are causing congestion, regardless of
whether they are attacking deliberately or not.

A well-known approach for assessing the performance of a binary classifier is to plot
true positive rate (TPR) against false positive rate (FPR) in what is commonly refereed
to as receiver operating characteristic (ROC) space. The TPR (also known as sensitivity
or recall) is the fraction of attack instances that have been correctly identified by the
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Figure 3.6: Detection results in the ROC space, where the diagonal line corresponds to
random guessing. There are 50 points, each representing the classification
results for a misbehaving UE over an activity period of 6 hours.

classifier, while FPR or fall-out is the proportion of normal samples that have been
mistakenly classified as malicious. We assume that if a UE generates at least 1 attack
packet within a time slot, then the corresponding output of the classifier should be larger
than 1, otherwise a false positive is declared. We obtain the TPR and FPR per UE from
the 360 classification decisions taken during the simulation experiment (6 hours, and
the resolution of the detector is ∆ = 1 minute). The results for 50 UEs are depicted in
Fig. 3.6 showing that the FPR is zero for all but one case, while the TPR is on average
90% which can be further improved, at the cost of higher FPR, by reducing the window
size W . Finally, Fig. 3.7 illustrates the accuracy of our classifier, namely the proportion
of correct decisions (both true positives and true negatives) out of all test samples. The
results indicate an accuracy between 88% and 98% with an average of 93% over the 50
test cases. This fluctuation, which can also be observed in Fig. 3.6, can be attributed to
the fact that our algorithm does not classify an attack as such until few time slots have
passed (depending on w), and therefore misbehaving UEs with many silent periods will
produce higher false positives; fortunately, these less aggressive UEs will generate lower
signalling loads.
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Figure 3.7: The accuracy of the RNN algorithm, measured as the fraction of correct
decisions over the activity period of 6 hours, for 50 misbehaving UEs.

3.4 Mathematical Analysis

In this section, we present a mathematical model [31] which allows us to evaluate and
optimise the performance of the two storm detectors that we have developed so far:
the above CDR approach, and the signalling based detector in D4.1 [6] which counts
the number of nuisance RRC transitions between low and high bandwidth states, and
enforces a mitigation policy if this number exceeds a threshold. The analysis allows
us to derive the optimum value of the counter’s threshold, given a detection rate for
the overall system, and to show that this optimum value substantially reduces both the
average number of attacking devices and the amount of signalling traffic.

The analysis and discussion in this section is conducted using very elementary and well
established modelling techniques [30,33] that are widely used in telephony and teletraffic.
We represent the set of normal and malicious mobile calls in the system by a state s(t)
at time t as:

s(t) = (b, B,C,A1, a1, ... , Ai, ai, ...) (3.1)

where:

• b is the number of mobiles which are just starting their communication in low
bandwidth mode,
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• B is the number of normal mobiles which are in high bandwidth mode,

• C is the number of normal mobiles that have started to transfer or receive data or
voice in high bandwidth mode,

• Ai is the number of attacking mobiles which are in high bandwidth mode and have
undergone a time-out for i− 1 times,

• ai is the number of attacking mobiles which have entered low bandwidth mode
from high bandwidth mode after i time-outs.

We assume a Poisson arrival process of rate λ of new “calls” or mobile activations, and
a call that is first admitted in state b then requests high bandwidth at rate r. Note that
r−1 can be viewed as the average time it takes a call to make its first high bandwidth
request to the network.

With probability 1 − α such a call will be of normal type and will then enter state
B, while with probability α it will be an attacking call and will request high bandwidth
and hence enter state A1 indicating the first request for bandwidth that is made by a
defectively operating application or malware that can contribute to a storm. A schematic
diagram of the model is presented in Fig. 3.8.
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Figure 3.8: A schematic representation of the mathematical model: (a) evolution of the
number of normal and attacking calls in the system, and (b) the M/M/∞
queueing system representation for a node in the model with arrival rate x
and departure rates y and z.
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Once a call enters state A1, since it is misbehaving, it will not start a communication
and will time-out after some time of average value τ−1. Note that the time-out is a
parameter that is set by the operator, and in practice it is of the order of a few seconds.
After entering state a1, the call may be detected as being anomalous, and will be removed
or blocked from the system at rate β1, where β−11 is the average time it takes the detector
to identify that this call has the potential to contribute to a storm, and to block the call
from further activation. However, it is very unlikely that the system is so smart that
it can make this decision correctly regarding the call so early in the game, so typically
β1 ' 0 and the call will manage to request high bandwidth and then enter state A2 at
rate r.

Proceeding in the same manner, in state Ai the anomalous call will again not start a
normal communication, so it will eventually time-out after an average time τ and enter
state ai, and so on. As a consequence, the rates at which calls enter these states is
simply:

ΛA1 = αΛb,

Λai = ΛAi ,

ΛAi+1 = Λai
r

r + βi
= αΛb

i∏
l=1

fl, (3.2)

where fl = r
r+βl

, and Λb is the rate at which calls enter state b, which will be determined
below from a more detailed analysis. Different calls will interfere each other via (i) the
access to limited wireless bandwidth, and (ii) possible congestion due to signalling and
other traffic in the backbone network. However if we neglect these points as a first
approximation, calls act independently of each other so that the average number of calls
in each of the “attacking” states, that are denoted by ai and Ai, is the average arrival
rate of calls into the state, multiplied by the average time spent by a call in that state,
so that we have:

NA1 =
αΛb
τ1

,

NAi =
αΛb
τi

i−1∏
l=1

fl, i > 1,

Nai =
αΛb
ri + βi

i−1∏
l=1

fl, i > 1. (3.3)
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As a consequence, the total average number of malicious calls becomes:

Na =
∞∑
i=1

[Nai +NAi ] = αΛb

∞∑
i=1

{[
i−1∏
l=1

fl][
1

τ
+

1

r + βi
]}. (3.4)

Now with regard to normal calls, once a call requests high bandwidth and enters
state B, it will start communicating and this will be expressed as a transition rate κ
which takes the call into “communication state” C. From C the call’s activity may be
interrupted, as when a mobile device stops sending or receiving data to/from a web site,
or when a voice call has a silent period, in which case the call will return to state B at
rate µ. Similarly, the call may end at rate δ, leaving the system.

From B it may either return to C at rate κ signifying that transmission or reception
has started once again, or it may time-out at rate τ and return to state b. Once it
returns to state b after a time-out, the call can try again to enter state B or state A
as a normal or attacking call, since we have to include the fact that a normal call may
become an attacking call after acquiring malware during its “normal” communication
with a web site or with another mobile. As a consequence, we can calculate the rates at
which the calls enter these normal operating states become:

Λb = λ+
τ

τ + κ
ΛB,

ΛB = (1− α)Λb +
µ

µ+ δ
ΛC ,

ΛC =
κ

κ+ τ
ΛB, (3.5)

which yields:

ΛB = γΛb, where γ =
1− α

1− µκ
(µ+δ)(κ+τ)

,

Λb =
λ

1− τ
τ+κγ

=
λ

1− τ(1−α)
τ+κ− µκ

µ+δ

,

ΛB =
λγ

1− τ
τ+κγ

,

ΛC =
κλγ

κ+ τ(1− γ)
. (3.6)
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3.4.1 Optimum Counter for Mitigation

In this section we describe how to optimise the detection of signalling storms using both
signalling [6] and billing related information. The anomaly detector based on signalling
protocols counts the number of successive RRC transitions that a mobile triggers without
actually making use of the requested bandwidth. If this number reaches a threshold
n, then a mitigation policy is activated to prevent the mobile from making excessive
requests. On the other hand, the billing based detector conducts analysis of the user’s
behaviour, and can also check other attributes such as destination IP addresses or port
numbers that may be associated with malicious activities.

A large value of n will improve the chances of correctly detecting a misbehaving mobile
user, providing the system with full confidence to activate the mitigation policy. If n
is small the counter based detector will have high false positives, giving a bigger role
for the billing based detector. Thus the higher the n, the faster the decision can be to
invoke mitigation, using only signalling information. Based on this principle, and with
reference to our earlier definition of βi, we have:

βi =

{
0, 1 ≤ i < n,
β(n), i ≥ n

where the detection rate β(n) increases with the threshold n, with a slope or derivative
with respect to n expressed as β

′
(n). Using the previous analysis, the average number

of malicious calls becomes:

Na = αΛb[(n− 1 +
r

β
)(

1

τ
+

1

r
) +

1

τ
] (3.7)

while the resulting signalling load from the attack is given by the total rate of malicious
transitions between low and high bandwidth states:

Λa = αΛb +
∞∑
i=1

[Λai + ΛAi ] = αΛb[2n+ 1 +
2r

β
] (3.8)

With some further simple analysis we can show that the value n∗ that minimises both
Na and Λa, is the value that satisfies:

β(n∗)2 ≈ r.β′(n∗). (3.9)

Figure 3.9 shows Na and Λa versus n when β(n) = 0.02n with r = 0.5 secs−1, and
we see that n∗ = 5 as predicted by (3.9). Note that since the mitigation strategy
prevents misbehaving mobiles from generating signalling traffic for a short period, it
cannot completely eliminates the attack; however, the optimum value n∗ is able to
reduce the average number of misbehaving devices by about 60%.
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Figure 3.9: Number of attacking mobiles (left) and resulting signalling overload (right)
versus the number of false transitions that triggers the mitigation mechanism,
when the rate of new connections λ = 10 calls/s, timer τ−1 = 5s, percentage
of malicious calls α = 0.1, average connection setup time r−1 = 2s, and
normal user’s traffic characterised by κ−1 = 10s, δ−1 = 5mins, and µ−1 = 5s.
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3.5 Final Remarks

While this section has focused on the real-time detection of signalling anomalies, the
proposed RNN based approach is generic and can be applied to detect and classify a
variety of attacks targeting both the mobile user and the network. This requires the
selection of appropriate features and the adjustment of the algorithm’s parameters, as
we have illustrated in the case of signalling storms. Furthermore, the insights gained
from the mathematical model, which captures the interactions between the signalling
and billing based detectors, will be utilised in the integration phase in order to improve
the overall performance of the NEMESYS solution.
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4 Graph-based Descriptors for the Detection of
Billing Related Anomalies

This section presents a graph based approach for the detection of billing-related anoma-
lies in mobile networks. The technique uses graph based descriptors (cf. section 4.1)
to capture the network billing activity for a specific time period, where nodes in the
graph represent users and servers, and edges represent communication events. Graph
traversal techniques are then utilised in section 4.2 to create multiple graphs in each
vertex neighbourhood, the size of which is manually defined by the analyst based on
the task at hand. Section 4.3 presents expressive features that are extracted from the
neighbourhood graphs, and used in order to train a random forest classifier [15] to recog-
nise anomalous graphs as presented in section 4.4. The algorithm is finally applied in
section 4.5 to detect anomalous users in two simulated datasets for SMS spam and sig-
nalling storm. A schematic representation of the proposed anomaly detection approach
is presented in Fig. 4.1.

Figure 4.1: An overview of the anomaly detection approach based on graph-descriptors.

4.1 Graph Descriptor

A graph descriptor is a graphical representation of input information that captures
its main structural characteristics. A graph G(V,E) comprises a set of vertices V =
{v1, v2, ..., v|V |} and a set of edges E = {e1, e2, ..., e|E|}, where E ⊂ V × V . A graph
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descriptor is a weighted directed graph in which W : E → Rn is a function that takes as
input a specific edge and returns its corresponding edge weight, which is an n-dimensional
vector. The vertices of the graph descriptor can thus represent network entities (e.g.
users, servers, etc.), the edges correspond to communication events between them, and
the edge weights capture the attributes of these communications.

In the context of CDR, the graph descriptor represents the billing activity of the users
in the network. Specifically, the nodes of the graph are the source and destination in
the CDR, e.g. user IDs for calls/SMS and IP servers for Internet traffic. The edges
connect specific sources to their destinations and are directed, while the weights of the
edges represent specific attributes of the CDR records, e.g. the number of calls/SMS,
or the size of the Internet packets. The exact weights of the edges are selected based
on the task at hand, and the scenario under investigation. In this respect, the proposed
graph descriptor provides a holistic view of the CDR activity in the mobile network, and
provides a first step towards identifying anomalous behaviours.

Table 4.1 shows a small example of call records for three users: User-1 called User-2
two times, and User-2 called User-3 one time. The graph descriptor for this example is
created by associating each user with a vertex, and connecting users that exchanged at
least one call. Since there is only one attribute in the CDR, edge weights represent the
number of calls between users. The direction of the edges encodes the direction of the
communication. The resulting graph descriptor of the CDR in Table 4.1 is illustrated in
Fig. 4.2, where the widths of the edges reflect their weights: the edge connecting User-1
to User-2 has weight 2, and all other edges have weight 1.

Table 4.1: An example CDR data representing calls between users.

Call ID Origin user Destination users

1 User-1 User-2

2 User-1 User-2

2 User-2 User-1

3 User-2 User-3

4 User-3 User-4

5 User-4 User-2
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Figure 4.2: The graph descriptor of the calls in the CDR data of Table 4.1. The weights
of the edges represent the number of calls between users: User-1 called User-2
two times.

4.2 Graph Neighbourhoods

The graph descriptor provides a method to represent the communication activities of
all the users in a network. In order to identify anomalous behaviours in the structure
of the graph, a traversal method is applied to the initial graph, which results in the
creation of multiple smaller graphs, each representing the neighbourhoods of a vertex.
The resulting graphs are subsequently used for feature extraction and classification of
anomalies.

Let Nk(vi) denote the set of k-neighbours of vertex vi ∈ V . This set is comprised
of all the nodes that have graph geodesic distance smaller than or equal to k, where
the geodesic distance GD(vi, vj) between two vertices vi and vj is the length of the
shortest path connecting them. Hence, the k-neighbours of vertex vi ∈ V are defined as
Nk(vi) = {vj |∀GD(vi, vj) ≤ k}. Graph traversal then consists in creating a new graph for
each vertex vi, denoted as Gi(Vi, Ei), where Vi = Nk(vi)

⋃
vi, Ei = {ej = {vk, vh}|∀ej ∈

E, and vk, vh ∈ Vi}, and E is the set of edges of the initial graph descriptor G that is
being traversed. Fig. 4.3(a) shows an example of k-neighbourhood graph for different
values of k, where the graph is created for the central large vertex; the larger the value
of k the larger the resulting graph.

Since the graph is directed, we denote by esj the source vertex of edge ej ∈ Ei, and

by edj its destination vertex. For each k-neighbours of vertex vi ∈ V , the set of outward
directed edges represent all the edges that have their source in the set Nk(vi) and their
destination outside of this set. More precisely, the set of outgoing edges for Nk(vi) is
given by:

Eouti = {ej |ej ∈ Ei,∀esj ∈ Nk(vi) and edj /∈ Nk(vi)} (4.1)

The set of ingoing edges Eini for the set Nk(vi) is defined in a similar manner. Fig. 4.3(b)
shows the set of inward and outward directed edges for each k-neighbourhood of the
central vertex in Fig. 4.3(a). It can be observed that all the edges that intersect the
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Figure 4.3: (a) Example of k-neighbourhood graph for the central large vertex under
different values of k. (b) Example of inward and outward directed edges for
the k-neighbourhood graph, with k = i, which consists of all the edges that
intersect the dashed red ellipsoid C.

dashed red ellipsoid C belong to either the set of ingoing edges (edges that are directed
towards the centre) or the set of outgoing edges (edges that are directed away from the
centre).

Fig. 4.4 illustrates the graph traversal process, showing the graphs that are created in
each step of the iteration using k-neighbourhoods for k = 1 and k = 2. All the vertices
of the graph are traversed, and for the specific vertex under consideration in the current
iteration (called active vertex), all its k-neighbourhoods are utilised to create the corre-
sponding neighbourhood graph. The red node in Fig. 4.4 represents the active vertex in
each step and the green vertices are its k-neighbourhoods in the graph. The end result
is the creation of a set of neighbourhood graphs, one for each vertex: {G1, G2, .., G|V |},
where |V | is the number of vertices of the entire graph descriptor G.

4.3 Graph based Feature Extraction

This section describes how the aforementioned graph neighbourhoods can be used to
extract relevant features that are able to characterise the network activity. The neigh-
bourhoods that are created correspond to a set of weighted graphs Gi (Vi, Ei), one for
each vertex, with a weight mapping function W . From these representations, multiple
features can be extracted as described below, taking into account the weights and direc-
tion of the edges, where each feature captures a different aspect of the graphs and all
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Figure 4.4: An example of graph traversal with k = 1 and k = 2. The red vertex repre-
sents the active vertex in each step, and green vertices are its k-neighbours
in the graph.

the features together provide a complete view of the network activity.

4.3.1 Volume

The volume feature fvol captures the size of the graph, and consequently the degree of
network activity, which is important for identifying anomalies related to large network
activities. The volume feature is defined as follows:

fGivol =
∑
ej∈Ei

g (W (ej)) , (4.2)

where:

g(x) =

{
1, for |x| 6= 0
0, for |x| = 0

and Gi denotes the neighbourhood graph of vertex Vi, Ei its set of edges, and W (ej) the
weight of edge ej ∈ Ej .
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4.3.2 Edge Entropy

Shannon’s entropy takes as input a set of symbols and their underling distribution,
and returns their average amount of information; the input symbols represent distinct
entities in a set of objects, which in this case are the edge weights. Hence the edge
entropy fee captures the amount of information in the edge weights as characterised
by their underling distribution. Large difference in the entropy value between distinct
graphs indicates that their weight distribution is quite different. The edge entropy of a
graph Gi is defined as:

fGiee = −
Y i∑
j=1

yij
yitotal

log

(
yij
yitotal

)
(4.3)

where Y i is the number of different edge weight instances of graph Gi, y
i
j is the number

of occurrences of the j-th weight, and yitotal =
∑Y i

j=1 y
i
j is the total number of weight oc-

currences. Note that this feature characterises two possible types of network behaviour:
change in the volume of the data, and change in their underling distribution. Large
network disturbances not only increase the volume of the data, but also have a direct
effect on their distribution. The entropy feature is introduced to capture this effect.

4.3.3 Graph Entropy

Graph entropy fge measures the structural information content of the graph based on
the distribution of the edge connections. The graph entropy was introduced in [40]
as a problem of determining the best possible encoding of the information emitted by a
source in which pairs of symbols may be indistinguishable. As noted earlier, the symbols
represent distinct entities in a set of objects which, in the case of graph entropy, are the
vertices. Two symbols are distinguishable if they are connected through an edge, and
indistinguishable otherwise. Examples of the entropy value of known graphs (illustrated
in Fig. 4.5) include:

• A complete graph with n vertices has graph entropy log2(n) bits, since all the
vertices are distinguishable. In this case, fge is equivalent to Shannon’s entropy.

• A complete bi-partite graph has entropy 1 bit, since it can be partitioned into two
sets of indistinguishable vertices.

• A graph with no edges has entropy 0 bits, since all the vertices are indistinguishable.

More formally, Korner’s entropy is defined as [61,62]:

fGige = min
X,Y

I(X ∧ Y ) (4.4)
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where I(X ∧ Y ) is the mutual information of the variables X and Y that have the
following properties. The variable X is uniformly distributed and taking its values on
the vertices of Gi, while Y on the stable sets of Gi, and their joint distribution is such
that X ∈ Y with probability 1. A subset Y of the vertices Vi of an undirected graph
Gi = (Vi, Ei) is a stable set if no edge in the graph has both endpoints in Y .

Figure 4.5: Examples of graph entropy.

4.3.4 Maximum Outlier Factor

The maximum outlier factor fmof of all the weights of all the graphs Gi,∀i ∈ {1, 2, .., |V |}
characterises the existence of outliers in the graph, where an outlier represents an edge
weight which is not common, and thus deviates from the normal behaviour.

It is important to note that in order to define the fmof feature, all the different edge
weights for all the graphs Gi must be taken into account, and not only the weights of
the graph under investigation. In this manner, false positives are reduced and only the
true outliers stand out, since false positives can be caused by a small sample of weights,
which may not be sufficient for an accurate outlier calculation. In our approach, we use
the entropy outlier factor (EOF), which was first proposed in [37] to quantify the degree
of outlier of each data record in a multidimensional set. The EOF procedure, denoted
by F

(
W (ek), P

)
, takes as input an edge ek plus its weight W (ek) and the set of all the

edge weights P =
{
W (ej) | ∀ej ∈ Ei, ∀i ∈ {1, 2, .., |V |}

}
, and returns its corresponding

outlier factor, which is in [0, 1] with values close to 1 being outliers. The fmof feature is
then defined as follows:

fGimof = max
ek∈Ei

F
(
W (ek), P

)
(4.5)

4.3.5 Edge Weight Ratio

The edge weight ratio feature fwr captures the total difference in the values of the weights
between the edges of a graph Gi directed outward from vi and inward to vi. Thus,
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this feature captures anomalies regarding large imbalances between the communication
directions. For example, the number of SMS sent by spammers is usually much larger
than what they receive, while a normal user is likely to exhibit comparable number of
messages in both directions. We define the edge weight ratio feature of graph Gi as:

fGiwr =

∑
ej∈Eouti

W (ej)∑
ej∈Eini

W (ej)
(4.6)

where Eouti and Eini are the set of outward and inward directed edges for the k-neighbours
of graph Gi, as described in section 4.2.

4.3.6 Average Outward/Inward Edge Weight

The average outward edge weight favout represents the ratio of the volume of traffic
generated by a node to the number of its destinations:

fGiavout =

∑
ej∈Eouti

W (ej)

|Eouti |
(4.7)

This feature can be useful to detect, for example, spammers or port scanning worms that
typically have high communication activity directed to a large number of destinations,
resulting in an average outward edge weight close to 1. On the other hand, normal users
are likely to communicate with a small set of destinations, leading to favout >> 1 for high
activity users. Similarly, the average inward edge weight favin can be defined as in (4.8)
but using Eini ; this feature will exhibit very small values (close to 0) for the malicious
behaviours mentioned above, and moderate to high values for normal behaviour which
may further increase when a user receives anomalous traffic.

4.3.7 Number of Outward/Inward Edges with a Specific Weight

These features count the number of outward and inward edges that have weight equal
to a specific value w. The feature for outward edges fneout is defined as follows:

fGineout =
∑

ei∈Eouti

1[W (ei) = w], (4.8)

where 1[x] is the characteristic function which takes the value 1 if x is true and 0 other-
wise. This feature can recognise deterministic communication patterns which are often
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exhibited by malware (e.g. a spammer sending one spam message to each destination, or
a bot receiving commands from a remote server a specific number of times). Similarly,
we define a feature fnein as the number of inward edges with a specific weight.

4.4 Detection of Anomalous Users

As discussed earlier, each neighbourhood graph is created based on the k-neighbourhood
of each vertex in the entire graph descriptor. Each vertex represents an entity in the
network (e.g. a user, server, etc.) that is characterised be a set of actions, and the
neighbourhood graph describes the network behaviour of this entity. Thus we can use
supervised learning methods to train a classifier based on the features extracted from
each graph, so as to recognise anomalous neighbourhood graphs, i.e. anomalous entities.

There are a number of methods that may be used for supervised classification. In
the context of graph based descriptor framework, random forest [15] has been shown
to outperform other supervised learning algorithms [20, 21] in a variety of datasets. In
addition, this method does not suffer from overfitting problems, is less sensitive to outlier
data, and calculates automatically the importance of each feature in the classification
task [9]. Hence we use the random forest algorithm along with the features that we have
described in order to perform anomaly detection.

Specifically, the features extracted from each of the neighbourhood graphs are utilised
to train the classifier to distinguish between normal and abnormal behaviour. Then,
when a new graph neighbourhood is generated, it is provided to the trained algorithm for
classification. It should be noted that the random forest is trained using the Leave-one-
out validation method. In other words, in the case that the random forest must predict
the outcome of a specific graph neighbourhood, it is trained with all other graph neigh-
bourhoods that contain both anomalous and normal graphs. In this way, the efficiency
of the proposed approach in detecting possible unknown incidents is demonstrated.

The random forest is a collection of multiple decision trees, trained on random samples
extracted from the initial dataset. The final classification result is calculated using ma-
jority voting. Fig. 4.6 shows an example of decision tree generation for the classification
of two coloured circles: red and green. The background colour represents the classifica-
tion result at the specific iteration, as calculated from the largest class belonging to the
corresponding partition. The total space is iteratively partitioned into smaller regions
along each feature, in order to create the space partitioning that best represents the
data.
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Figure 4.6: Examples of decision tree generation for the classification of two coloured
circles (red and green). The total space is iteratively partitioned into smaller
regions along each feature, so as to create a partitioning that best represents
the data.

4.5 Applications

In this section we evaluate the performance of our anomaly detection algorithm on two
distinct datasets, one for a common attack against the mobile users (SMS spam) and
the second represents threats targeting the network infrastructure (signalling storms).

4.5.1 Application 1: Spam SMS dataset

The traffic models for the spam scenario are all based on the SMS application described
in section 3.3.1. There are in total 10,000 mobile devices which are divided into three
distinct groups according to behaviour: (i) 4,000 users exhibit low levels of SMS activity,
(ii) 3,000 users exhibit medium levels of SMS activity, and (iii) 4,000 users exhibit high
levels of SMS activity. In the simulations, 102 mobile devices, uniformly distributed
across the three distinct groups, are assumed to be infected with spam malware. The
malware does not have a diurnal cycle, and it regularly sends a configurable number of
spam SMS messages, with each message being sent to a destination chosen randomly
from the mobile’s contact list. Normal mobile users have a very small probability of
responding to a spam SMS; this small probability represents the small fraction of users
who reply to received spam messages in order to “opt-out” of the service. The goal in
this experiment is to identify the infected mobile devices.

The simulation scenario includes out-network, premium and legitimate advertising
servers, each having a different messaging behaviour in order to create noise in the data
and to produce realistic users’ profiles. For example, premium SMS servers may respond
to a received message but they do not initiate a conversation, unlike out-network servers
which represent mobile devices that are not explicitly simulated. On the other hand,
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the advertising server is assumed to be a device connected to the mobile network and
capable of sending SMS messages at a high rate. We assume that the server has obtained
a list of the phone numbers of many mobile users, and frequently selects one or more
users at random and sends a message to each. This server follows a diurnal cycle, and
it does not respond to any received SMS messages.

Since the important factor in this dataset is SMS activity, the graph descriptor is
created to represent this behaviour. Specifically, the vertices of the graph represent the
mobile devices, and the edges represent SMS activity between two devices. The weight
of an edge represents the number of messages exchanged between the corresponding
devices. Thus, each neighbourhood graph represents the SMS activity of each user with
respect to the selected destinations and the number of messages directed to them. For
the creation of the neighbourhood graphs, k-neighbours with k = 1 were used, since a
spam message concerns two users, and the addition of extra neighbours would only add
noise, since a normal user whose graph geodesic distance to an anomalous user is 2 is
not necessarily anomalous.

Fig. 4.7a shows the volume feature fvol for 150 users from the low SMS activity class.
As one would expect, spammers are characterised by relatively higher volumes, as they
communicate with a larger number of destinations. Fig. 4.7b shows the edge weight ratio
feature fwr for 150 users from the medium SMS activity class, and the results illustrate
that the anomalous users have low values in this feature, which is consistent with the
fact that spammers send significantly more messages than they receive.

The edge entropy feature fee for 150 users taken from the high SMS activity class
is presented in Fig. 4.8a. One can observe that anomalous users have large entropy
values, indicating that they communicate with a large number of destinations, each at a
different frequency. Fig. 4.8b presents the graph entropy feature fge for the same set of
users, and the the results indicate that spammers exhibit lower values for this feature,
which is due to the fact that they communicate with a large number of users. For the
definition of the number of outward and inward edges with a specific weight (i.e. fneout
and fnein), a weight value w = 1 was selected based on the assumption that spammers
are most likely to send SMS only once to new destinations.

The results of applying our anomaly detection algorithm are summarised in Table 4.2.
The algorithm is evaluated based on two metrics, the True Positive (TP) which measures
the number of users that are anomalous and also classified as anomalous by the system,
and the False Positive (FP) which measures the number of users that are normal but
classified as anomalous by the system. As shown in the table, the users were partitioned
into three subsets on which both training and testing are performed: (i) low activity
users, (ii) low and medium activity users, and (iii) low, medium, and high activity users
(i.e. the entire dataset). In all cases the proposed anomaly detection approach was

51



(a) The volume feature fvol .

(b) The edge weight ratio feature fwr.

Figure 4.7: Features based on the neighbourhood graphs for 150 users taken from the
low (a) and medium (b) SMS activity classes of the spam dataset, using the
number of SMS as the weights of the edges. The first 33 users are anomalous,
characterised by high volume and low edge weight ratio.

able to identify the anomalous users, producing zero false positives, which indicates
that the features we defined can discriminate between normal and malicious behaviours
independently of the activity level of the users. In practice, however, we do not expect
such level of performance, and therefore we plan to conduct further experiments, as part
of the evaluation phase of NEMESYS, using models based on real malware or spam
campaigns.
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(a) The edge entropy feature fee.

(b) The graph entropy feature fge.

Figure 4.8: Features based on the neighbourhood graphs for 150 users taken from the
high SMS activity class of the spam dataset, using the number of SMS as the
weights of the edges. The first 33 users are anomalous, characterised by high
edge entropy and low graph entropy due to the large number of recipients.

Table 4.2: The results of the application of the graph descriptors anomaly detec-
tion methods for the identification of spammers in the spam SMS dataset.
TP=True Positive, and FP=False Positive

Activity Level Normal users Abnormal users TP FP

Low 3965 34 34 0

Low & Medium 6931 68 68 0

Low, Medium & High 9898 102 102 0
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4.5.2 Application 2: RRC Attacks

This section presents the application of the graph descriptor approach to the dataset for
RRC signalling storms described in section 3.3.2. There are two classes of anomalous
users in this dataset: (i) malicious UEs that send Internet packets whenever a demotion
from the DCH state is assumed to have occurred, and (ii) misbehaving UEs that send
periodic packets whenever the user is inactive. There are in total 200 users, of which 100
are anomalous, 50 in the first class and 50 in the second one. The goal of this experiment
is to evaluate the performance of our algorithm in identifying the anomalous users.

The graph descriptor for this dataset is built in order to reflect its key behavioural
factor which is Internet activity. Specifically, the vertices of the graph descriptor rep-
resent users and servers, while edges correspond to Internet traffic between them. The
weights of edges represent the size of the packets exchanged between the corresponding
users and servers. The graph traversal technique takes into consideration only the user
vertices for the creation of the graph neighbourhoods (which include both users and
servers), and the subsequent identification of anomalous users. For the creation of the
neighbourhood graphs, k-neighbours with k = 1 were applied so as to take into account
the Internet traffic from the user under investigation to its direct neighbours.

Fig. 4.9a presents the maximum entropy outlier factor feature fmof of the neighbour-
hood graphs for all 200 users in the storm dataset. The feature is used as the main dis-
criminant factor between normal and abnormal behaviour, and it indicates the existence
of at least one edge with very high weight in the activity of the abnormal users. Each
such edge represents the continuous exchange of Internet packets between the anoma-
lous users and a specific server. Fig. 4.9b indicates that there is no distinct behaviour
between normal and abnormal users in the volume feature, confirming our earlier obser-
vation that signalling anomalies are difficult to detect using traditional flooding based
techniques.

Finally, we summarise the results of applying our graph descriptor anomaly detection
method to the storm dataset in Table 4.3, showing that the algorithm was able to identify
all the anomalous users, while generating no false positives.

Table 4.3: The results of the application of the graph descriptors anomaly detection
method for the identification of abnormal users in the storm dataset.

Normal users Abnormal users TP FP

100 100 100 0
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(a) The maximum entropy outlier factor feature fmof .

(b) The volume feature fvol.

Figure 4.9: Features of the neighbourhood graphs created for all 200 UEs in the storm
dataset, using packet sizes as the weights of the edges. The first 100 users are
anomalous, as indicated by their large outlier degree. However, no distinct
behaviour is present in the volume feature.
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5 Conclusions

The goal of the NEMESYS project is to develop a novel security framework for gathering
and analysing information about the nature of cyber-attacks targeting mobile devices
and networks, and to identify abnormal events and malicious network activity. Thus this
deliverable described our proposed approaches to the analysis of network traffic and the
development of anomaly detection algorithms, which combine modelling and learning
from network measurements and billing (meta)data that are readily available to the
mobile operator. In contrast to signalling based solutions, the algorithms presented in
this deliverable do not require changes to network components and/or protocols, and
can be deployed using standard traffic monitoring platforms.

We first presented an online anomaly detection approach based on the random neural
network (RNN) [28,29]. Our method uses the notion of an observation window in which
summary statistics about the behaviour of a mobile user are collected and stored at fixed
time intervals (called slots) and used in order to calculate expressive features that can
capture both sudden and long term changes in the user’s behaviour. The features for
the most recent time slot are subsequently fused using a trained RNN to produce the
final classification decision. Using our mobile network simulator, we have shown that
our technique is able to detect quickly users that are causing signalling overloads in the
network, without directly monitoring the control plane itself, and can even identify the
end of attacks.

The proposed RNN approach is flexible, providing a number of parameters to optimise
the trade-off between detection speed, accuracy and overhead. For example, the size of
the observation window and the frequency of statistical measurements (i.e. number of
slots within the window) could be adjusted in real-time to respond to network conditions,
and to reflect the capacity of the network to tolerate a specific misbehaviour. Our
approach is also generic and can be applied to identify a variety of attacks targeting
both the mobile user and the network, which requires only the selection of appropriate
features and the adjustment of the algorithm’s parameters. We concluded our evaluation
with a mathematical model that allows us to analyse and optimise the performance of the
signalling based detector of D4.1 [6], when used in conjunction with the RNN method;
the insights gained from the model will be utilised in the integration phase to improve
the overall detection performance of the NEMESYS solution.

Finally, we developed an anomaly detection algorithm which uses graph based de-
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scriptors to capture billing related activities in the network, where nodes in the graph
represent users and servers, and edges correspond to communication events. In this
method, graph traversal techniques are applied to create multiple graphs in each vertex
neighbourhood, from which features are extracted and used in order to train a random
forest classifier [15] to recognise anomalous graphs. The graph based approach has been
validated for the signalling storm dataset, and also for SMS spam data generated by our
simulator. The results indicate that the method is able to identify, with high accuracy
and precision, anomalous users in both datasets, thus providing a complementary ap-
proach to the online RNN algorithm; the latter is activated and configured based on key
performance indicators to respond to an urgent condition, while the former can be exe-
cuted periodically to detect stealthy but non-critical malicious campaigns in the mobile
network. These algorithms will be further evaluated in the final phase of the project
using our mobile simulator and testbed.
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