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Abstract

This deliverable explores spatio-temporal information correlation techniques for the
detection of abnormal events and attacks in mobile networks. To this end, a variety of
expressive features are defined and extracted from signaling traces collected from oper-
ational 3G/4G mobile networks as well as synthetic billing-related records. Appropriate
proximity measures that can be used to characterise the similarity of different aspects of
spatio-temporal data are also defined for each set of data. These features and proximity
measures are then used for the discriminant analysis of the datasets in the presence
of anomalous instances. A model-based approach using multi-class queueing models is
also developed, which allows to conduct quick what-if analysis to determine whether an
observed behaviour is normal or malicious in order to perform signaling-based anomaly
detection. The deliverable is supplemented by a discussion on the correlations between
attack strategies observed in wireline and mobile networks, and provides a review of
existing tools for correlation-based anomaly detection.



1. Introduction

One of the key characteristics of mobile communications is that mobile traffic is contin-
uously monitored by the mobile service providers for billing and accounting purposes.
Therefore, many malicious activities will have an evident impact on the accounting and
billing information of the misbehaving or attacking users, as well as their signaling be-
haviour. In this respect, abnormal network traffic and event detection requires methods
to characterise and extract principal statistics from the observed traffic, such as frequen-
cies, correlations and times between events, and possible spatio-temporal tendencies over
different timescales. These mechanisms, which are the subject of this deliverable, should
be able to utilise data from multiple and heterogeneous sources, including Charging Data
Records (CDR) for the users and control-plane protocol data, combined with security
alerts that may be available from external entities, e.g. through the data collection
infrastructure being developed as part of the NEMESYS project.

1.1. Objectives and Scope of the Deliverable

This deliverable is part of Task 5.1, which (i) explores different data processing and
representation techniques that will be used by the network-based anomaly detection
algorithms being developed in NEMESYS, and (ii) realises a prototype of the detection
module based on these algorithms. This deliverable focuses on the first objective since
the anomaly detection algorithms are currently being evaluated, and the design of the
module will be specified in the final version of the deliverable, due in month 24 of the
project.

Correlation analysis is a well-known technique used in security in order to discover
relationships between entities so as to improve the effectiveness of anomaly detection.
This involves analysing the dependency, relevance, and redundancy between different
traffic variables to:

• select expressive features that can distinguish malicious behaviour from normal
activity changes in order to reduce the number of variables to be monitored by the
detection algorithms, and

• identify normal correlations between the attributes and use them as input features

11



to the anomaly detection algorithms. In this context, deviations from reference
relationships between the traffic variables indicate anomalies.

In the scope of this deliverable, we explore a number of frameworks for data represen-
tation and analysis. First, we conduct a correlation study of time series data comprising
signaling traces collected from operational 3G/4G mobile networks. Second, we present
a graph-based correlation analysis of CDR for a large number of mobile users, and we
show how the approach can reveal abnormal communication patterns in the social graphs
of malicious users. Finally, we develop a novel model-based approach which allows us to
conduct quick “what if” analysis to determine whether an observed behaviour is normal
or malicious. In all of these cases, we use a number of proximity measures to characterise
the similarity of different aspects of spatio-temporal data.

1.2. Coupling Between Attacks in Wireline and Mobile
Networks

In this section we provide a high-level analysis of the coupling between attack strategies
observed in wireline networks and their cellular counterparts. We evaluate such possible
coupling between the two systems, both in terms of the types of threats encountered,
and interdependencies that cause security incidents in the “wired” Internet to affect the
availability and security of mobile network services and infrastructure. This analysis
constitutes the most basic form of correlation, in the sense of discovering relationships
between entities to improve the threat identification process, and attempts to answer
two basic questions related to the objectives of this deliverable:

1) Can we use traditional network-based correlation and anomaly detection methods
in cellular networks?

2) How can correlation analysis help the threat identification and elimination pro-
cesses, even when performed at the highest level (i.e. between mobile and wireline
networks)?

Smart mobile devices are open to both traditional and mobile-specific threats due to
the multiple roles these devices play and the heterogeneity of mobile communication
technologies and networked services [15]. Among the traditional threats that mobile
devices face, there are physical attacks that require physical access to the device, device-
independent attacks such as eavesdropping on the wireless medium or man-in-the-middle
attacks, email-based spam and phishing, and IP-based attacks. Current IP-based attacks
encountered on mobile devices [109] have been found to be largely similar to those on
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non-cellular devices, but there are also a number of traits of attacks that are tailored
specifically for mobile devices, as discussed below. With the growing popularity of
smart devices, mobile-specific threats have evolved from SMS/MMS-based denial-of-
service (DoS) attacks [71, 104] to more sophisticated attacks that usually come in the
form of malware and target both the core network [41,105] and the mobile users [71]. The
ability of smart devices to install and run apps not only from official markets but also
from unknown sources exposes them to malware [33, 120], and while mobile malware is
currently a real but small threat compared to desktop malware in Europe and the USA,
it is clearly evolving and growing as attackers experiment with new business models by
targeting mobile users (cf. NEMESYS deliverables [12,65] and references therein). The
year 2012 has also seen the emergence of the first mobile botnets [67]. A botnet is a
collection of Internet-connected devices acting together to perform tasks, often under
the control of a command and control server. In wireline networks, malicious botnets
are used to generate various forms of spam, phishing, and distributed denial-of-service
(DDoS) attacks. Mobile botnets extend such capability to cellular networks, give cyber-
criminals the advantages of control and adaptability, and pose a significant threat to the
mobile core network as they could be used to launch debilitating signaling-based DDoS
attacks [56,72,73,105].

To answer Question 1 above, the preceding discussion indicates that mobile malware
is not very different from its non-cellular counterpart in the sense that they both rely
on the same Internet infrastructure to support their illicit operations [60]. In particular,
both types of malware use (i) download sites and social engineering tricks (e.g. phish-
ing), although mobile malware also employs novel social engineering methods such as
app repackaging and QR codes; (ii) command and control servers which are used, for
instance, by premium SMS diallers to regularly change destination numbers in order to
avoid and circumvent blacklisting; and (iii) data transfer for uploading credentials, user’s
location or other stolen personal information. Furthermore, attacks on both mobile and
personal computers (PCs) have been shown to share many behavioural characteristics,
including host changes, growth patterns, etc. Thus, traditional network-based correla-
tion techniques which have been applied successfully in the wired domain could be also
used to detect mobile threats that follow the behavioural patterns of their traditional
counterparts.

The coupling between attacks in mobile and wireline networks is not limited to the
types of threats involved or the use of common hosting infrastructure, but also includes
other interdependencies that cause security incidents in wireline networks to affect the
availability and security of cellular networks. First, the Internet carries a lot of unwanted
traffic [89] which includes backscatter traffic associated with remote DoS attacks, scan-
ning probes, spam, exploit attempts, etc. If such traffic reaches a mobile network, it
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may cause a signaling storm due to the frequent but perhaps small amounts of data gen-
erated, requiring repeated signaling to allocate and deallocate radio channels and other
resources, and therefore have a negative impact on the control plane of the network.
Second, some mobile apps go haywire when an unexpected event occurs in the Internet,
such as loss of connectivity to a popular cloud service, causing a signaling storm. For ex-
ample, an important feature of smartphones is the ability to receive “push notifications”
from cloud services in order to notify the user of an incoming message or VoIP call. This
feature is enabled by having the mobile device send periodic keep-alive messages to a
cloud server. In normal operation, this keep-alive period is a large value, e.g. 5 minutes.
However, if the cloud service becomes unavailable, e.g. due to a DDoS attack, then the
mobile device will attempt to reconnect more frequently, generating significantly higher
signaling load than normal in the process as has recently been reported [86,87]. In this
case, the storm will have very little impact on the volume of data handled by the mobile
network, and thus it will not visible along this spatial dimension which may nevertheless
be useful in detecting other attacks. On the other hand, a large number of mobile de-
vices will attempt to recover connectivity within a short time period, causing significant
increase in the number of TCP SYNC packets directed to the server [8], as well as higher
delays for those users served by the signaling-overloaded network component(s). This
example illustrates that security incidents in mobile networks often exhibit both spatial
and temporal locality that could be exploited for detection purposes, hence the answer
to Question 2 above, namely correlation and analysis of events that span different time
periods across multiple spatial dimensions (e.g. traffic variables, users, network elements,
services, etc.) can improve the accuracy of detection and assist in identifying the root
cause of an anomaly.

1.3. Outline of the Deliverable

The rest of this deliverable is organised as follows:
Chapter 2 provides a review of common tools used by anomaly detection algorithms,

including correlation metrics, feature selection and reduction techniques, and deviation
measures for both time series and graph-based representations of raw data.

Chapter 3 presents analysis of signaling traffic traces, collected from commercial
3G/4G networks, in order to provide relevant features that can be used by the anomaly
detection algorithms being developed in NEMESYS. To this end, time series decompo-
sition and dimensionality reduction techniques are utilised to enable efficient processing
of the data and improve the performance of the anomaly detection algorithms. The
extracted features are further reduced by examining the amount of information they
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convey, and the correlations between them under both normal and attack conditions.
Chapter 4 develops a graph-based approach for correlation analysis and abnormal

event detection in CDR data. First, the data records are transformed into graph repre-
sentations, and graph matching techniques are applied in order to quantify their spatio-
temporal dissimilarities. Then the calculated distances between graphs are mapped into
2D space, allowing the visualisation of high dimensional data for both feature selection
and anomalous graph detection. The efficiency of the proposed approach in correlating
anomalous events that span different time periods across multiple users is demonstrated
on the VAST2008 CDR dataset [1].

Chapter 5 presents a quantitative model-based framework for correlating mobile user
activities with their impact on different network components so as to perform anomaly
detection more effectively and reduce false alarms. The approach incorporates modelling
of the mobile network at different levels of abstraction to properly represent the compo-
nents and the processes that are prone to anomalous behaviour, and it allows anomaly
detection algorithms to obtain quick estimates of the impact of a suspected set of users
so that abnormal but non-performance-impacting behaviours are not incorrectly flagged
as malicious. Chapter 6 concludes the report with a summary and directions for future
work.
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2. Background

This chapter provides background information and an overview of the available tools
for correlation analysis in mobile networks. The chapter is organised around the main
topics addressed by this deliverable: approaches for correlation analysis, feature selection
and reduction techniques, and deviation measures for anomaly detection. While special
emphasis is given to the methods that are used in the deliverable, we also briefly review
other techniques that are currently being investigated and which may be included in the
final version of the abnormal event detection module.

2.1. Correlation Metrics

One approach to perform anomaly detection is to model the correlations between differ-
ent attributes under normal network conditions, and then identify anomalous correla-
tions that may characterise specific attacks. For instance, the signaling load generated
by a user is usually positively correlated with its data volume and mobility, and a devi-
ation from this normal relationship therefore indicates anomalous behaviour that may
lead to a signaling storm.

2.1.1. Pearson Product-Moment Correlation Coefficient

The Pearson correlation coefficient is one of the most commonly used correlation metrics,
which measures the strength of the linear relationship between two variables X and Y
as the ratio of their covariance to the product of their standard deviations:

r(x, y) =
cov(x, y)

σxσy
=

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
(2.1)

where x̄, ȳ are the sample means, and −1 ≤ r ≤ 1 which takes positive values when the
two variables increase/decrease concurrently, negative values when one variable tends to
decrease as the other increases, and 0 for independent variables.

If the relationship between the variables is nonlinear, the raw data can be converted
to ranked variables [108], whereby numerical or ordinal values are replaced by their rank
when the data are sorted, and correlation is then computed as in (2.1) from these ranks,
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giving Spearman’s rank correlation coefficient [4,44] which we denote by ρ(x, y). Thus ρ
is a non-parametric measure of the similarity of the orderings of the data, in the sense
that it assesses how well the relationship between two variables can be described using
any monotonic function, instead of being restricted to linear relationships.

2.1.2. Kendall’s τ Rank Coefficient

Kendall’s τ [119] is a non-parametric measure of statistical dependence between two
ranked variables x and y, each of size n, and is given by:

τ(x, y) =
nc − nd

1
2n(n− 1)

(2.2)

where the denominator is the number of possible pairings of x with y observations, while
nc is the number of concordant pairs and nd is the number of discordant pairs which are
defined as follows. A pair of observations (xi, yi) and (xj , yj) are said to be concordant
if xi − xj and yi − yj have the same sign, otherwise they are called discordant. In the
presence of rank ties, there are other variants of Kendall’s τ which make adjustments
for the ties so that the coefficient remains in the range [−1, 1].

It should be noted that a previous study [80] comparing rank-based correlation meth-
ods showed that Kendall’s τ is superior to Spearman’s coefficient, but this may not
always be the case. Thus, the time series analysis presented in Chapter 3 we utilise,
among other methods, the three correlation coefficients described above in order to ex-
tract meaningful statistics and other characteristics of signaling traces from core mobile
components.

2.1.3. Mutual Information

While linear methods of correlation analysis can be useful in many cases of interest, in
general it is essential to also consider nonlinear relationships between variables. Hence
the motivation for considering information theoretic metrics is their capability to quan-
tify a general dependence between random variables, without having to convert the data
to ranked variables.

Entropy is an important concept in information theory which measures the uncertainty
or unpredictability in a dataset X as follows:

H(X) = −
∑
x

p(x) log p(x) (2.3)

where p(x) is the probability of a data item x ∈ X. Entropy is typically interpreted
as the minimum number of bits required to encode the classification of a data item;
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for example, if there is one class then entropy is 0, while a dataset containing multiple
classes has entropy greater than 0. Mutual information is a measure of the dependence
between two variables, and therefore it can be used to detect anomalous values based on
the fact that during an abnormal event the mutual information of the variable with the
rest of the variables deviates from normal [23, 93]. Formally, the mutual information of
two random variables X and Y is defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(2.4)

where p(x, y) is their joint probability mass function, and p(x) and p(y) are their marginal
distributions.

2.2. Feature Selection and Representation

Given a dataset in which data items are defined by a set of attributes, the objective of
anomaly detection algorithms is to partition the data into distinct classes (e.g. normal
and abnormal) based on the values of the features. Feature selection is the process of
selecting a subset of the attributes that best expresses the different classes in the dataset,
and discarding irrelevant features that provide no useful information. Further processing
may also be applied to the selected features in order to analyse the dependency, relevance,
and redundancy between them and to find an intrinsic dimensionality that is much
smaller than the original dimensionality [10,114,115]. This section reviews a number of
feature selection and reduction techniques that could be used for anomaly detection in
mobile traffic.

2.2.1. Expert Knowledge

Features that are relevant to a specific attack model can be selected using expert knowl-
edge which is gained either from previous experiences or through modelling, simulation
and analysis of novel attack scenarios. The use of the latter model-based approach in
mobile networks involves representing how the communication system functions at the
level of each mobile connection, and explicitly describing the main internal resources
of the network architecture, as well as the external resources that the mobile user may
access during its call. Then by conducting a “what if” analysis, and observing the im-
pact of attacks on various metrics and counters collected at different resolutions and
aggregation levels, it is possible to identify the features that are relevant for detecting
the attacks.
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2.2.2. Information Theory

In this section we discuss how information theoretic concepts can be used to extract
relevant features that embody important information about the different classes in a
dataset. The information gain of a feature A which can take values v ∈ VA, is defined
as the reduction of entropy when the dataset X is partitioned according to the feature
values, i.e.:

IG(X,A) = H(X)−
∑
v∈VA

|Xv|
|X|

H(Xv)

where Xv is the subset of X where A has value v. A feature with high information
gain is therefore desirable since it produces highly regular partitions (i.e. subsets with
low entropy), which is better for classification purposes [57]. Alternatively, one may
use mutual information (2.4) to extract relevant features. In particular, since mutual
information quantifies the shared information between two random variables, it can be
taken as a measure of the relevance between features and the class labels. In this context,
features with high predictive power will have larger mutual information [63,83,97,110],
while less important features will be uncorrelated to the classification variable. Also,
features can be selected to be mutually independent with each other in addition to
having strong correlation with the class labels, as in the Minimum Redundancy Maximum
Relevance (mRMR) algorithm [5, 84]. In general these approaches are referred to as
correlation-based feature selection (CFS) [11,42] and can be based on any of the methods
discussed in Section 2.1.

2.2.3. Wavelet Analysis

Wavelet analysis has been applied in the literature for the selection of relevant time series
features via a combined time-frequency representation. Specifically, wavelet transforms
decompose a time series data into a low frequency signal representing the long term
trend, and a high frequency signal capturing short term variations. It is then possible
to construct a new signal from the two (or possibly more) components in the decom-
position, such that only features with high variations (i.e. spikes) from the long term
trend are selected [112]. Such sudden changes are sometimes difficult to identify in the
original signal because they may be obscured by an overall trend of the data [14,21,118].
Decomposition techniques are applied in Chapter 3 for the analysis of signaling traffic
traces collected from specific mobile core network components.
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2.2.4. Dimensionality Reduction

Multi-dimensional Scaling

Multi-dimensional Scaling (MDS) [16] is a linear dimensionality reduction method used
in order to compute optimal mapping of the given multi-dimensional data to a lower
dimensional space, based on the distances of the data points. MDS is often the initial
approach for dimensionality reduction, and its flexibility lies in the fact that the selection
of the distance function directly affects the mapping results [31,43,98,116].

MDS is the approach used in Chapters 3 and 4 for visualising high dimensional datasets
in the 2D plane. It takes as input a distance matrix DN×N = [dij ], where the element
dij represents the distance between the i-th and j-th objects, and outputs a matrix
XN×M , where M is the number of dimensions in the projected space, e.g. M = 2 for
2D visualisations. The mapping in MDS is performed in such a way that the distance
of each data instance to the other instances is proportional to the distances in D. The
matrix X contains the coordinates of each data instance in the projected 2D space:

X =


x11 · · · x1M
x21 · · · x2M

...
. . .

...
xN1 · · · xNM

 =


x1

x2
...

xN


where xi is a vector that contains the coordinates of point i. The relation between the
distance dij and the vectors xi, xj is given by:

d2ij = (xi − xj)
T (xi − xj)

= xTi xi − 2xTi xj + xTj xj

where xT denotes the transpose vector of x. From the equation above, we need to
compute a new matrix D̂ which contains the squared distances between the instances:

D̂ =


d211 d212 · · · d21N
d221 d222 · · · d22N
...

...
. . .

...
d2N1 d2N2 · · · d2NN

 =


0 d212 · · · d21N
d212 0 · · · d22N
...

... 0
...

d21N d22N · · · 0


The matrix D̂ can be expressed in terms of X as follows:

D̂ = cbT − 2XXT + bcT , where b =


1
1
...
1

 , c =


xT1 x1

xT2 x2
...

xTNxN

 (2.5)
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Now multiplying J = I − 1
NbbT by the left and right hand sides of (2.5) we obtain

further simplifications:

XXT = − 1

N
JD̂J (2.6)

where the terms on the right hand side of (2.6) can be factorised by eigenvalue decom-
position yielding:

XXT = − 1

N
JD̂J = QLQT

where the matrix L is a diagonal matrix containing the eigenvalues li sorted such that
l1 ≥ l2 ≥ . . . ≥ lN ≥ 0. By selecting the first two largest eigenvalues for the 2D projection
and setting the rest to zero, the required matrix X2D can be obtained as follows:

XXT =
(
QL

1
2

)(
QL

1
2

)T
⇒

X = QL
1
2 ⇒

X = Q


√
l1 0 · · · 0

0
√
l2 · · · 0

...
...

. . .
...

0 0 · · ·
√
lN

⇒

X2D = Q



√
l1 0

0
√
l2

0 0
...

...
0 0

 (2.7)

which contains the 2D coordinates, where the projected distance of one object to the
others is indicative of its difference with the rest. In the context of anomaly detection,
points that are far from the point cloud’s centre may indicate an irregularity with respect
to their network activity.

Other Dimensionality Reduction Techniques

While MDS is the main dimensionality reduction approach used in this deliverable,
there are several other techniques that have been proposed in the literature. Principal
Component Analysis (PCA) uses a statistical procedure that transforms a set of possibly
correlated variables into a smaller set of linearly uncorrelated variables (i.e. principal
components). Since the number of principal components is smaller than or equal to the

21



number of original variables, the transformation reduces the dimensionality of the data.
Furthermore, using this procedure meaningful underlying variables may be identified
[22,46,48,58,81].

Isomap is a manifold modelling algorithm and is often used as an alternative approach
to MDS. In a first step, the distances of the k-nearest neighbours are computed and the
pairwise Geodesic distances are estimated. Subsequently, MDS is applied on the resulting
distance matrix [68, 102, 111]. Isomap is applied in cases where manifold modelling is
required to accurately project the data in lower-dimensional spaces, e.g. where points
on the underlying manifold with distant geodesic distances may have small Euclidean
distance.

Finally, another approach to dimensionality reduction, the kernel trick [70], can be
applied to extend linear dimensionality reduction algorithms to nonlinear ones. This
has been a common practice in the literature and there are numerous such extensions
of popular algorithms such as KPCA [69], KLDA [92], KNMF [117], among others.
Typically, different kernel based techniques are examined in order to determine which
one best fits the problem [113].

It should be noted that in the majority of the experiments conducted in [51, 106],
linear models outperformed manifold learning approaches, when used for visualisation
purposes. Based on these results, MDS was selected as the initial approach for visual-
ising mobile network signaling and CDR data. However, manifold-based dimensionality
reduction methods will be examined in the final version of the deliverable.

2.3. Measures for Anomaly Detection

The choice of an appropriate deviation metric is an important step in the development of
any anomaly detection algorithm. These metrics are typically mathematical constructs
that provide an approximation of the distance of an observation from a normal profile to
determine its degree of abnormality, but they do not necessarily satisfy all the properties
that a proper distance measure should have, such as non-negativity and symmetry. There
are many different ways in which dissimilarity between data attributes can be measured,
and in this section we briefly review some of the more important ones.

2.3.1. Information Divergence

The Kullback-Leibler (KL) divergence, also known as relative entropy, measures the
difference between two probability distributions. Let p and q be the probability mass
functions of two data samples representing training and test datasets, then the KL
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divergence of q from p is defined as:

dKL(p, q) =
∑
x

p(x) ln
p(x)

q(x)
(2.8)

where dKL(p, q) ≥ 0 with dKL(p, q) = 0 if and only if p = q. Note that KL divergence
is not a distance metric since it does not satisfy the triangular inequality and is not
symmetric, i.e. dKL(p, q) 6= dKL(q, p). This lack of symmetry presents some challenges
when some events are rare in only one of the two distributions, causing dKL(p, q) and
dKL(q, p) to take very different values. To overcome this limitation, several propos-
als for “averaging” the two divergence values have been considered, including entropy-
normalisation [52] as follows:

dEN (p, q) =
1

2

[
dKL(p, q)

H(p)
+
dKL(q, p)

H(q)

]
which has an information-theoretic interpretation: dKL(p, q) gives the expected number
of extra bits required to encode samples from p when using a code based on q, while H(p)
represents the number of bits required to encode p. Thus the ratio dKL(p, q)/H(p) is the
relative overhead in bits caused by replacing p with q. This metric was used in [26] to
detect changes in feature distributions of individual mobile users at multiple timescales.

2.3.2. Distance Metrics

There are a number of metrics to measure the distance of an observation x from a dataset
X described by a set of d-dimensional feature vectors whose mean is µ and covariance
matrix is Σ. One such metric is the Mahalanobis distance which generalises Euclidean
distance by taking into account the correlations of the dataset:

dM (x,X) =
√

(x− µ)T ·Σ−1 · (x− µ)

When the features are independent so that the covariance matrix is diagonal, the result-
ing distance measure is known as a normalised Euclidean distance:

dM (x,X) =

√√√√ d∑
i=1

[
xi − µi
σi

]2
where (xi − µi)/σi is the z-score for the i-th attribute, which measures the number of
standard deviations σi an observation is above its expected value. For anomaly detec-
tion in mobile networks, a mapping of the z-scores for radio measurements and other
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performance indicators to a real number in [0, 1] was used in [100] in order to describe
how well the behaviour of a cell matches its normal profile.

Clearly, Euclidean distance is a special case of Mahalanobis distance with the identity
matrix as the covariance matrix. It belongs to a class of metrics that measure distance
between vectors in the d-dimensional space defined by feature variables. An alternative
way to turn dot products into distances is the cosine distance between two vectors x and
y defined as:

dcos(x,y) =
1

π
cos−1

(
x · y
|x| |y|

)
which ranges from 0 when the two vectors are identical, to 1 when they are exactly
opposite, while dcos = 1/2 indicates independence. The Canberra distance is another
numerical measure of the distance between pairs of points in a vector space. It is a
weighted version of Manhattan distance [49] and has been used as a metric for comparing
ranked lists and for intrusion detection in computer security [32]:

dC(x,y) =
d∑
i=1

|xi − yi|
|xi|+ |yi|

(2.9)

Finally, the Hamming distance between two vectors is a simple metric that counts the
number of non-matching attributes in the vectors:

dH(x,y) =

d∑
i=1

1[xi 6= yi]

where the indicator function 1[A] takes the value 1 if the condition A is true and 0
otherwise. This metric is useful for comparing strings, as when correlating domain
names [13] to discover malware that employs domain generating algorithms (DGAs) to
evade blacklisting.

2.3.3. Density-based Measures

Density-based anomaly detection techniques map data instances to spatial regions, and
estimate an anomaly score for a new instance by measuring its proximity to other in-
stances from the same neighbourhood. Since instances that belong to low density regions
are relatively distant from their neighbours, they can be considered anomalous.
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k-Nearest Neighbours

This method uses the k-nearest neighbours to calculate an outlier score. The density
around an object is the inverse of the average of the distance from the point to each of
its k-nearest neighbours:

densityk(x) =

[∑
y∈Nk(x)

dX(x,y)

|Nk(x)|

]−1
(2.10)

with some distance measure dX(x,y), Nk(x) being the set of k-nearest neighbours of x
and |Nk(x)| ≥ k its size. If the distance between a point and its neighbours is small, the
density will be high and the anomaly score should therefore be small.

Local Outlier Factor (LOF)

The LOF method measures the “outlierness” of each instance by examining its sparsity
compared to other normal instances. The method is applied on the d-dimensional Eu-
clidean space that is defined by the selected feature variables. For an object x the outlier
score [17] is computed by finding its k-nearest neighbours, then computing a reachability
distance rd of x with respect to other instances:

rdk(x,y) = max{kNN-dist(x), dX(x,y)}

where kNN-dist(x) is the distance between x and its k-nearest neighbour. Hence if y is
one of the k-nearest neighbours of x, then the reachability distance between the two is
kNN-dist(x), otherwise it is the actual distance. This smoothing operation reduces the
statistical fluctuations of dX(x,y) for all y close to x. The anomaly score LOF (x) is
then estimated as:

LOF (x) =

∑
y∈Nk(x)

lrd(y)
lrd(x)

|Nk(x)|
(2.11)

where lrd(x) is the local reachability density of x which is the inverse of its average
reachability distance based on its k-nearest neighbours, i.e. lrd(x) = densityk(x) when
dX(x,y) = rdk(x,y). LOF is typically used for unsupervised classification, when there
are no training datasets that contain anomalies. A more detailed description of the LOF
method and its theoretical foundations can be found in [17].

2.3.4. Graph-based Measures

When data is represented by a graph, detection of abnormal events is performed using
graph matching methods which determine how similar or dissimilar two graphs are.
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Although there are many flexible modelling structures in the literature, most of them
lack the well-established mathematical framework and some important operations [64].
For example, the similarity between two real vectors is well-defined, while the similarity
between two graph is not an easy task. To tackle the problem of graph matching, three
main methods have been proposed in the literature [64]:

• Graph Edit Distance: These methods operate directly in the graph domain, and
define the cost of edit operations necessary to make the graphs equal.

• Graph Kernels: These methods utilise graph kernels to define similarities between
graphs. The definition of graph kernels also permits the application of kernel
machines in the graph domain.

• Graph Embedding: These methods transform the graphs to be compared into
vector representations, thus allowing the application of various well-known distance
measures and analysis techniques.

These methods are described in detail in the sequel.

Graph Edit Distance

Graph Edit Distance (GED) can be considered as an application of the well-known string
edit distance, e.g. Levenshtein distance [59], in the domain of graphs. It measures the
cost of transforming the first graph until it is equal to the second. This transformation is
comprised of both structural and label distortions. The GED measure is defined directly
on the graph domain G and returns a real positive number:

d : G×G→ R+ (2.12)

For the direct calculation of such a measure the cost of basic edit operations must
be established. These edit operations are defined on the graph nodes and edges, and
include the following [64]:

• Substitution of an existing node (edge) with a new node (edge)

• Deletion of an existing node or edge

• Insertion of a new node or edge

Other basic edit operations have also been suggested in the literature, such as merging
or splitting [7]. Afterwards, a cost is associated with each edit operation using a function
c as follows:

c : O→ R+ (2.13)
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where O is the set of edit operations.
Utilising the aforementioned definitions, the GED measure is the minimum edit cost

required to transform the first graph into the second:

dGED (G1, G2) = arg min
Os⊆O

∑
oi∈Os

c (oi) (2.14)

where c (oi) is the cost of operation oi ∈ Os, and Os ⊆ O is a subset of all the possible
operations O.

An important factor in the calculation of the GED metric is the definition of the cost
function c(.). An intuitive way to define it is by considering the Euclidean distances
between the weights of the two graphs [78]. It should be noted that labels are distinct
characteristics of each edge or node taken from a set of symbols, while weights represent
quantitative values that characterise each edge or node and belong to the Rn space,
typically with n = 1. An unsupervised method for the estimation of c(.) is proposed
in [74] in order to estimate the unknown probability distribution of the edit operations
in a sample set of labelled graphs. Another unsupervised method for the estimation of
c(.) based on self-organising maps (SOM) is presented in [75].

After the definition of the cost function, the GED measure is found as a solution to the
optimisation problem in (2.14). One of the most widely known algorithms for solving
this optimisation problem is the A* algorithm [18]. This algorithm employs a search
tree to model the edit paths, which is constructed by considering the nodes of the first
graph. It uses a best-first search and finds a least-cost path from a given initial node to
a goal node. As A* traverses the tree, it follows a path of the lowest expected total cost
or distance, keeping a sorted priority queue of alternate path segments along the way.
Neuhaus et al. [79] formulated the problem as a quadratic programming problem, which
is based on the definition of a fuzzy edit path between two labelled graphs, so that nodes
and edges from one graph can be assigned to multiple nodes and edges of another graph.
Riesen et al. [90] formulated the problem as an assignment problem, in which the aim is
to find the lowest cost assignment between objects of two different sets.

A simple metric for evaluating the GED measure, under the assumption that the
cost of all the edit operations is equal to 1, i.e. c(.) = 1, and that there are only two
operations: insertions and deletion, is the following [19]:

dGED(Gi, Gj) = |Vi|+ |Vj | − 2 |Vi ∩ Vj |+ |Ei|+ |Ej | − 2 |Ei ∩ Ej | (2.15)

which measures the number of edit operations necessary to make the two graphs equal:
the first graph is denoted as Gi(Vi, Ei) and the second as Gj(Vj , Ej). This measure is
directly applicable to undirected graphs without weights.
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Graph Kernels

Kernel functions have been widely used in Statistics and machine learning to compute
in an efficient manner the similarities between different objects. While there are many
well-known kernels that operate on the vector space, including Linear, Polynomial, and
Gaussian, in the domain of the graphs, the available kernels are very limited and are
known as graph kernels.

Most of the graph kernels operate on a new graph which is a direct combination of
the two graphs that are being compared with respect to their similarity. The most
widely used method to combine two graphs is the tensor or direct product graph [64].
Then, various characteristics are extracted from the combined graph and used by the
kernel function for the calculation of the similarity value. For example, Gaertner et
al. [34] utilised the adjacency matrix of the direct product of two graphs, by calculating
a weighted sum kernel from the entries of the adjacency matrix as follows:

k(G1, G2) =

|Vx|∑
i,j=1

[ ∞∑
n=0

λnA
n
x

]
i,j

(2.16)

where λn ∈ R is the n-th weight, and Ax the adjacency matrix. This was extended
in [103] by defining a different transition matrix in which each entry is computed by a
simple gaussian kernel that measures the similarities between individual nodes in the
adjacency matrix of the direct product graph.

Neuhaus et al. [77] utilised GED measures to reduce the size of product graphs, and
ease the computation of the graph kernel. In particular, the adjacency matrix is de-
fined by utilising the optimal one-to-one node substitution calculated by a GED-based
algorithm. Additional graph kernels proposed in the literature can be found in [50,76].

Graph Embedding

Graph embedding techniques consist in mapping an input graph to a vector space using
a mapping function φ : G → Rn, where G is the domain of graphs and Rn is the n
dimensional space of real numbers. This mapping allows us to apply well-developed
machine learning methods, such as PCA, to the transformed graphs.

Riesen et al. [91] describe a graph embedding scheme which produces a dissimilarity
representation of each input graph. Multiple dissimilarity measures can be applied with-
out changes in the method, but the authors used GED based measures. Specifically, given
a set of weighted graphs G = {G1, G2, .., Gt}, where the graph nodes and edges have
weights associated with them, and a set of prototype graphs P = {P1, P2, ..Pm}, P ⊆ G,
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the emending vector in the Rm space, i.e. the vector representation of graph Gi ∈ G is
defined as follows:

φP (Gi) = [dX(Gi, P1), ..., dX(Gi, Pm)]T (2.17)

where dX(.) is the selected distance function between two graphs. Such an embedding
depends on the selection of the set of prototypes P . These issues are discussed in depth
in [91], where different prototype selection approaches are presented. Examples are the
Random Prototype Selector, which randomly selects m prototypes, and the Spanning
Prototype Selector, which aims to cover the set G with equally distanced prototypes.

Another approach called symbolic histograms for graph embedding is proposed by
Vescovo et al. [28,29], which consists in identifying frequent subgraphs in the initial set
of graphs G. Given a set of input graphs G = {G1, G2, .., Gt} and a set of subgraphs
S = {S1, S2, .., Sm}, the graph embedding function φS : G→ Rn is defined as follows:

φS(Gi) = [occ(S1), ..., occ(Sm)]T , ∀Gi ∈ G (2.18)

where occ : S → N counts the number of occurrences of the input subgraph for a given
graph in G. The occurrence function is evaluated utilising a weighted GED measure.
The set S is called the alphabet, and its selection influences the final result of the graph
embedding. An iterative incremental method is proposed to automatically determine
the alphabet set, S, that uses clustering to find recurrent graph structures in G.

Jain et al. [45] propose a graph embedding method based on structure spaces. This
embedding method provides a representation of the graphs in the Rn space, taking into
account their weighted adjacency matrices. The main method takes the rows of the
adjacency matrix and stacks them in order, creating a 1D vector representation. This
embedding allows for standard operations like inner product, Euclidean distance, and
norm, to be applied on the graph domain. Since every vector representation depends on
the order of the rows of the adjacency matrix, each operation is defined as an optimisation
problem, which searches the space of all possible row orderings to find the optimum. For
example, the Euclidean distance between two graphs in the embedded space is defined
as:

dE(G1, G2) = min
x∈A(G1),y∈A(G2)

‖x− y‖2 (2.19)

where x ∈ A(G1) is a possible vector representation of graph G1, and A(G1) is the set
of all possible vector representations of graph G1 taking into account the ordering of the
rows of the adjacency matrix.
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Other Measures of Graph Distance

Additional distance metrics between graphs are presented in [19], which differ from the
metrics discussed above in that they operate directly on the graph domain, similar to
GED, but without transforming the graphs. The Maximum Common Subgraph (MCS)
metric dMCS(G1, G2) of two graphs G1 and G2 is based on their isomorphism, and is
defined as follows:

dMCS (G1, G2) = 1− |VMCS |
max {|V1| , |V2|}

(2.20)

where |VMCS | is the number of vertices of the MCS of G1 and G2, and |Vi| is the number
of vertices of Gi, i ∈ {1, 2}. The same distance metric can also be defined for the edges
of the graphs.

The second distance metric takes into account the graph spectrum, i.e. the eigen
decomposition of the adjacency matrix, in order to find dissimilarities in the structures
of the graphs. Defining the spectrum of graph Gi as σ(Gi) = {λi1, ..., λim} in descending
order, the distance measure of the eigenvalues is then:

dσ (G1, G2) =

√√√√√√√
∑k

j=1

(
λ1j − λ2j

)2
min

{∑k
j=1

(
λ1j

)2
,
∑k

j=1

(
λ2j

)2} (2.21)

where k is number of highest eigenvalues that are taken into account.

2.4. Summary

In this chapter we presented a survey of existing tools for correlation-based threat iden-
tification and analysis. First we reviewed a number of correlation metrics that operate
either on the raw data, or after preprocessing the data on its rank or information con-
tent. We then discussed different approaches for feature selection and extraction, which
aim to reduce the number of variables to be monitored by the anomaly detection algo-
rithms. Finally, deviation measures that characterise the similarity of different aspects
of spatio-temporal data have been covered, including metrics based on distance, density
and graphs. There is usually no clear winner when it comes to selecting a method or
metric since the decision is dictated by factors related to the application domain, data
representation framework and other factors. The justifications for applying some of these
tools in the subsequent chapters will be provided therein.
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3. Time Series Correlation

3.1. Introduction

This chapter presents a time series analysis of two distinct datasets collected from op-
erational mobile networks. The results obtained from the study will be utilised by the
anomaly detection algorithms developed within NEMESYS (WP4). The raw network
traffic is represented by a set of traffic variables and subsequently various methods are
utilised in order to extract useful information and study the correlation and the charac-
teristics of the data. In particular, time series decomposition methods, dimensionality
reduction techniques and correlation coefficients are applied on the data and their re-
sults are presented in this chapter, which is organised as follows. First, the core network
architecture and the network traffic model are outlined. Then, analysis of the traffic
variables is performed for each of the two datasets, and the correlations between the
variables are examined using various metrics. Finally, some conclusions are drawn from
the results.

3.1.1. The Core Network Architecture

This section provides an overview of 3G/4G mobile networks, as shown in Figure 3.1.
Special emphasis is given to two components: (i) the Home Location Register (HLR) or
Home Subscriber Server (HSS), and (ii) the Authentication Centre (AuC). The HLR is
a component of 3G networks and the HSS is its equivalent in 4G deployments, but they
both perform the same functionalities. Thus we will use HLR in the rest of this chapter.

The HLR supports the network control layer by performing subscription and session
handling and providing capabilities for mobility management, user security, user authen-
tication, access authorisation, and service authorisation. In large 3G/4G networks, there
are usually more than one HLR/HSS databases, each serving millions of subscribers de-
pending on the HLR/HSS manufacturer and configuration. Consequently, a failure in
the operation of the HLR will cause service outages for all subscribers that are paired
with it. Moreover, the AuC is a network component used to authenticate subscribers
that request to attach to the network. Once authentication is successful, the subscriber
gains access to the services provided by the network. In practice, the AuC is physically
attached to or co-located with the HLR. The signaling traffic of the HLR and the AuC
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Figure 3.1.: Overview of a 3G/4G network [30]. In this diagram the central role of the
HLR component becomes apparent, as it is connected with all core network
components.
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Figure 3.2.: Raw network traffic from the Gr interface between the HLR and the SGSN.
Packets 1 and 3 correspond to authentication requests from mobile sub-
scribers. These packets can be exploited for authentication attacks, as de-
scribed later.

is initiated by the mobile subscribers, and reaches them after being routed by other
core network elements, such as the Mobile Switching Centre (MSC), the Serving GPRS
Support Node (SGSN) and the Visitor Location Register (VLR). The communication
protocol that carries these signaling messages is the MAP protocol, and an excerpt of
a packet capture of signaling-related communications between the SGSN and the HLR
can be seen in Figure 3.2. More specifically, Figure 3.2 illustrates two successful au-
thentication transactions initiated by the SGSN, and one GPRS location update which
resulted in an error because the subscriber was not allowed to roam on the network.

3.1.2. The Network Traffic Model

This section introduces the traffic model which represents the signaling load by a set of
attributes extracted from the activity in the control-plane of the mobile network. More
specifically, the traffic is modelled as a set of counters indicating the number of signaling
requests received by the component within a predefined time period. This method of
modelling the network traffic has the following merits:

• Offers an abstract overview of the network traffic and thus significantly decreases
the amount of raw data that needs to be processed to extract useful information.

• Is in line with the current monitoring infrastructure of the majority of the network
carriers. In particular, most network carriers collect statistics from each network
component, rather than raw traffic data.

• Preserves the privacy of the subscribers. This is important, as the legislations of
many European countries (e.g. Italy, Greece) prohibit the collection and analysis
of data on a per-user basis. Hence, the proposed traffic model processes data on a
per-message-type basis.
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Similar approaches that use aggregate statistics have been applied also in computer
networks [9, 81,95,96,101].

In order to define the HLR/AuC signaling traffic model more formally, let matrix Q
be:

Q =

 q1,1 . . . q1,Y
...

. . .
...

qK,1 . . . qK,Y

 (3.1)

where K is the number of traffic variables and Y is the number of observations of network
traffic. An element qij of Q is the j-th observation for traffic variable i. We denote a
row of Q by Qrow(i) = {qij ,∀j ∈ [1, Y ]}, where i ∈ [1,K] and a traffic instance as
Qcol(j) = {qij , ∀i ∈ [1,K]}, where j ∈ [1, Y ]. Each row in Q corresponds to a traffic
variable and each column to an observed traffic instance. Using Q, the correlation
between the different traffic variables and traffic instances is studied for the detection of
signaling anomalies in mobile networks.

3.2. Analysis of the HLR dataset

This dataset contains traces collected from the 3G/4G mobile network of the Greek
telecommunication provider COSMOTE during a period of five days. In this dataset,
the network traffic is represented by a set of variables, as described in Section 3.1.2, from
which time series are formed as shown in Figure 3.3.

A time series is composed of the values of the traffic variables over time, and it mea-
sures the network traffic activity over a given period of time. In other words, each
variable is merely a counter of signaling requests that were received by the monitored
HLR within a specific time frame. The traffic variables can be divided into three cate-
gories:

Basic Services (BS): These traffic variables are related to basic services that are pro-
vided by the network such as voice calls, SMS and data.

Supplementary Services (SS): These variables correspond to supplementary service pro-
vided by the network such as call forwarding or call barring. These services are
usually handled by the subscribers with the use of Unstructured Supplementary
Service Data (USSD) codes.

Mobility Management (MM): These traffic variables relate to one of the major func-
tions of any mobile network, namely tracking the location of the subscribers in the
network, so as to enable seamless delivery of mobile services to the users.
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Table 3.1.: The traffic variables from COSMOTE dataset along with their category and
description.

Category Name Description

BS

B16 Data transfer with circuit duplex asynchronous 9600 bps
B17 General data transfer with circuit duplex asynchronous
B1E Data transfer with circuit duplex synchronous 9600 bps
B1F General data transfer with circuit duplex synchronous
T11 Teleservice, normal speech service
T21 Teleservice, Receiving short messages from other subscriber
T22 Teleservice, Sending short message to another subscriber
T61 Teleservice, Facsimile transmission with alternative speech
T62 Teleservice, Facsimile transmission

SS

AoCI Advice of charge (information)
BAIC Barring of all incoming calls
BAOC Barring of outgoing calls
BIRO Barring of mobile terminated calls when roaming
BOIC Barring of international calls
BOIH Barring of international calls except home country
BORO Barring of mobile originated calls when roaming
CFB Call forwarding on mobile subscriber busy
CFC Conditional call forwarding

CFNA Call forwarding on no answer
CFNR Call Forwarding on subscriber not reachable
CFU Call forwarding unconditional
CLIP Calling line identification presentation
CLIR Calling line identification restriction
COLP Connected line identification presentation

CT Call transfer
CW Call waiting

HOLD Call hold
MPTY Multi party service
OCCF Operator controlled call forwarding
ODB Operator determined barring

MM

LR Location registration from GPRS subscribers
LU G LU from group members
LU R LU from home subscribers returning from other PLMNs
LU T LU from all home subscribers in total
LU V LU from home subscribers visiting other PLMNs
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Day 1 Day 2 Day 4 Day 5Day 3

Figure 3.3.: Signaling traffic variables collected from one HLR of COSMOTE’s network
for a period of 5 days (20–25 Nov 2013) with granularity of 1-hour. The
traffic variables are: Teleservice 11 (T11), Teleservice 21 (T21), Call For-
warding Unconditional Activation (CFU) and Location Updates (LU) from
home subscribers.

In order to design and develop efficient algorithms for the analysis of the traffic vari-
ables, a deep understanding of the normal traffic profile is required. In addition, the
features that contain significant information and are useful for anomaly detection pur-
poses need to be identified. Hence, methods for time-frequency representation of the
data, dimensionality reduction, and extracting the information content of the data will
be presented in the rest of this section.

3.2.1. Decomposition

As a first step in the analysis, the time series of all the traffic variables are decom-
posed in order to deconstruct them into their notional components. In particular these
components are:

• The trend component that reflects the long term progression Tt.

• The seasonal component that describes the seasonality of the data St.

36



• The residuals which describe the random non-regular influences Rt.

In this work additive decomposition [24] is applied so that each time series yt is rep-
resented as a sum of the above three components, i.e. yt = Tt + St + Rt. Additive
decomposition was selected because the series exhibit no exponential growth and the
amplitude of the seasonal component remains almost constant over time. Due to space
constrains, however, only the analysis of two traffic variables from each category is pre-
sented in detail. In particular, the two variables with the highest entropy values were
selected, since they provide more information than the other variables as discussed in
Section 2.2.2.

Note that all the figures of this section use a scale bar in order to indicate the relative
magnitude of the variations in each of the components and how this variation affects the
original data. Hence, smaller scale bars correspond to components that highly affect the
original data, whereas larger scale bars indicate components with less significance.

Basic Services

First we present the analysis of the two traffic variables that exhibit the highest entropy
values. These variables are T11 and T21 (cf. Table 3.1), which represent the number
of requests for the most commonly used circuit switched (CS) communication services
in mobile networks, namely voice calls and incoming SMS, respectively. Other variables
with relatively high entropy values are bearer services (e.g., B16, B17) which are involved
in the transmission of signaling information that specify network attributes such as the
minimum quality level for a voice call and the automatic re-establishment of a bearer
service after the service has been disconnected due to interference.

The results are presented in Figures 3.4 and 3.5, from which the following observations
can be made: both time series are smooth and the fluctuations within each day are clearly
visible. In the case of T11 no spikes are observed in any of the five days, while for T21
there is a spike on the first day, which is also the highest observed value for this traffic
variable. The seasonal component clearly shows traffic volume variations that occur
within each day and is very similar for the two variables. Our analyses of all the variables
in this category reveal that most of them have similar seasonal components. The trend
component is very interesting since in both cases it illustrates activity differences between
different days of the week. More specifically, for T11 the trend component is stable
during all the workdays while during the weekend there is a major decrease, which
becomes more pronounced on Sunday. On the other hand, the trend component for T21
is not so significant but it shows that there is a minor decrease in volume during the
weekend. The remainder component, which is the difference between the data and the
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Figure 3.4.: The time series of the traffic variable T11 along with its seasonal, trend and
remainder components.
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Figure 3.5.: The time series of the traffic variable T21 along with its seasonal, trend and
remainder components.
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estimated (seasonal + trend), captures short-term variations and thus can be used in
order to detect anomalies that cause sudden changes in traffic volume, since it magnifies
any differences from the reference profile. These results are in accordance with previous
studies of computer and mobile network traffic [20,25,27,54,66,88].

Supplementary Services

The two traffic variables from SS which exhibit the highest entropy values are CFU
(unconditional call forwarding) and CFNR (call forwarding when the subscriber is un-
reachable), which reflect the fact that call forwarding functions are among the most
commonly used supplementary services in mobile networks. Their additive decomposi-
tion is shown in Figures 3.6 and 3.7, from which we observe that the CFU time series is
smooth, while the CFNR is quite noisy. More specifically, in the case of CFU no spikes
are observed in any of the five days and in the case of CFNR there are various spikes,
with the largest being in the third day. Despite these, the fluctuations within each day
are clearly visible in both time series. Hence, the seasonal component clearly depicts the
traffic volume variations that occur within each day. However, not all of the SS variables
appeared to be seasonal. This is mostly because certain services, such as BOIC, are very
rarely used and thus there is no seasonality to be observed.

For CFU and CFNR, the trend component appears to be less significant compared to
the other components, as shown with the scale bar. It illustrates some activity differences
between different days of the week in both time series. In particular, for CFU, after being
stable for the first two days, it reaches its peak on the third and then descends during the
weekend. On the other hand, the trend component for CFNR is stable during the work
week and stays close to its highest values, and in the weekend it gradually decreases.
Finally, the remainder component appears to be in both variables random and does not
have spikes. As indicated previously, the remainder could be utilised to detect sudden
changes in the traffic volume.

Mobility Management

In this section, we present the decomposition results for the two MM traffic variables
exhibiting the highest entropy values. These are LU T and LR, which correspond to the
total volume of location update requests and the total volume of location registration
requests from GPRS subscribers, respectively. From Figures 3.8 and 3.9 we see that
both time series are smooth. However, it should be noted that in the case of LR there is
a sudden increase in the volume of requests in a specific time of the day. Additionally,
the fluctuations within each day are clearly visible in both time series. As a result, the
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Figure 3.6.: The time series of the traffic variable CFU along with its seasonal, trend
and remainder components.
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Figure 3.7.: The time series of the traffic variable CFNR along with its seasonal, trend
and remainder components.

42



seasonal component clearly depicts the traffic volume variations that occur within each
day.

Furthermore, similar to the previous results, the trend component illustrates activity
differences between different days of the week. For both LU T and LR time series, we
can observe a significant decrease in the trend component during the last two days, sig-
nifying the difference in profiles between weekdays and weekends. Finally, the remainder
component of each variable shows random short-term variations and does not contain
abnormally high values.

3.2.2. Multidimensional Scaling

As a second step in the analysis of the available data, we applied various dimensionality
reduction techniques in order to test how they behave under normal traffic conditions and
in the presence of anomalies. Here we present results obtained using multidimensional
scaling (MDS) with the Canberra distance metric defined in (2.9). In particular, MDS
was applied so as to reduce the number of dimensions (∼ 35) to a single set of 2D
coordinates. In Figure 3.10 we show the “expected” shape of the 2D projection of the
network activity within a period of 24 hours. The shape may appear rotated but its
basic geometrical properties (e.g. curvature) remains the same under normal traffic
conditions.

As observed in Figure 3.11, the 2D projection of the traffic variables forms a shape
similar to the one shown in Figure 3.10. Moreover, it becomes apparent that the traffic
is periodic, with 24 hours periodicity. This verifies the results of the decomposition
analysis from the previous section: all days follow a similar path and this becomes even
more pronounced in Figure 3.11(f) where we plot the results for all the 5 days combined.
Note also that Figures 3.11(a), (b), and (c) appear to be closely similar, as (d) and
(e). This can be attributed to the fact that the former are weekdays and the latter are
weekend days.

Figure 3.12 shows the MDS results when an anomaly is artificially inserted in day 4
to represent a DDoS attack exploiting CFU signaling requests. We see that the overall
shape of day 4 in Figure 3.12(a) and the combined days in Figure 3.12(b) are again similar
to the expected one, except that now the synthetic anomaly appears as an outlier in the
shape and can be easily identified either visually or through a detection mechanism that
operates on the projected data.
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Figure 3.8.: The time series of the traffic variable LU T along with its seasonal, trend
and remainder components.
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Figure 3.9.: The time series of the traffic variable LR along with its seasonal, trend and
remainder components.
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Figure 3.10.: Two examples (a) and (b) of the expected shapes of the 2D projection of
the network traffic within a 24 hour period. The shape does not differ
significantly between different days, and significant deviations indicate the
presence of anomalies in network activity.

3.2.3. Entropy of Traffic Variables and Features

Next the information content of the traffic variables and the extracted features is ex-
amined. This, along with the correlation analysis presented in Section 3.2.4, helps to
determine which features contain useful information and which ones should be discarded.
For measuring the information content of the variables, we apply entropy H(.) as defined
in (2.3) to the original variables O, their derivatives D, as well as their trend T , seasonal
S and remainder R components, and the results are depicted in Figure 3.13.

The features whose entropy is zero hold no information at all and can be safely dis-
carded. Thus, these variables are not examined in our subsequent correlation analysis.
Furthermore, the traffic variables whose H(O) and H(D) values are mostly less than 1
carry very low information content. Despite this, it is possible that some of these vari-
ables will exhibit strong correlation with other low-information-content variables and
hence might be useful for the anomaly detection, where deviations from these normal
correlations may indicate anomalies. Examples of such traffic variables are BOIH and
BOIC. On the other hand, information-rich variables such as T11, T21, LU T and CFU
exhibit high entropy values in all the features and thus should certainly be considered
for anomaly detection.
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Figure 3.11.: Projection of all the traffic instances from the COSMOTE dataset in the 2D
space using MDS with the Canberra distance metric: (a)-(e) correspond to
the five days contained in the dataset, and (f) depicts all the days combined.
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Figure 3.12.: MDS projection of all the traffic instances for (a) day 4 and (b) all the
days combined, when an anomaly representing a DDoS attack with CFU
requests is artificially injected on day 4.

Figure 3.13.: Entropy charts for all the traffic variables and the extracted features of the
COSMOTE dataset.
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3.2.4. Correlation Analysis

In this section, the correlations between the traffic variables are studied in order to ex-
amine which ones are strongly correlated and which are independent. Understanding
the relationships between the variables, and how they influence each other, is impor-
tant for the development of anomaly detection algorithms. For instance, traffic variables
that are highly correlated under normal conditions are likely to exhibit different cor-
relation profiles under abnormal circumstances. The results of this study will also be
utilised in order to select the features that are more descriptive and to discard those
that hold little useful information. To this end, three different correlation metrics are
used: Pearson’s correlation coefficient is applied to measure the linear relationship be-
tween pairs of variables, while Spearman’s and the Kendall’s correlation are applied to
measure relationships that may not be linear, since they both use the ranks of the data
(cf. Section 2.1).

Figure 3.14 shows a visualisation of the correlation matrix of the traffic variables. An
initial observation is that certain variables appear to be largely independent of other
variables, namely CFC and B16. This is mostly because very few subscribers use these
services and hence there are no specific usage patterns. Furthermore, other variables
appear to be strongly correlated with only one other variable. These correlated pairs
include CFNA-CFB, BOIC-BOIH and BAIC-BIRO, which are expected when consider-
ing the purpose of these signaling messages. More specifically, CFNA and CFB are both
related to call forwarding, BOIC and BOIH to barring international calls, and BAIC
and BIRO to incoming calls. However, apart from these correlated pairs, the aforemen-
tioned variables are independent of all other signaling variables. This can be attributed
to the fact that the services they correspond to are used only sporadically (e.g., when a
subscriber travels abroad), unlike with the use of more popular network services such as
voice calls. Another correlated pair is T11-T21, which is of high significance as the two
messages correspond to the voice calls and SMS sent by subscribers, respectively. The
correlation between these two services is due to the fact that users utilise SMS and voice
call regularly within a day. It should be noted that any observed correlation between
two or more variables is useful for the anomaly detection algorithms. On the other hand,
anomalies in traffic variables that are independent can be detected using other statistical
properties, e.g. maximum value of first derivative of the variable.

Apart from the correlated pairs, there are also some correlation clusters that can be
observed in the matrix in Figure 3.14. A correlation cluster contains a group of traffic
variables that are strongly correlated with each other:

• The first cluster includes the Location Registration (LR) variable which appears
to be correlated with the CW, T21, B1F, CFU, LU T and T11. The correlation
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Figure 3.14.: Visualisation of the correlation matrix of the HLR traffic variables con-
structed using the mean value of the Pearson’s, Spearman’s, and Kendall’s
coefficients. The blue and red colours correspond to higher positive and
negative correlations, respectively. The lower triangular part of the matrix
presents visually the correlation strength, while the upper part shows the
actual correlation value.
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values vary from strong (∼ 0.7) to very strong (∼ 0.9) depending on the coefficient
used. An intuitive explanation of this correlation cluster is that when subscribers
use one of the network services, they are likely to trigger a location registration
procedure in the network if they have moved to a new location area.

• Another cluster, which is the most prevalent, is the one that includes the most
commonly used services of the network. The variables that correspond to these
services are: T11, CFU, T62, B1F, T21, and CW. This implies that the majority
of the subscribers use more than one service within the day, and the number of
service requests they trigger depends on the time of the day (e.g. the volume of
requests is low late at night). Additionally, LU T appears also to be correlated
with most of these variables, indicating that when subscribers use their mobile
devices they tend to move between different location areas.

• There is also a cluster that includes all the traffic variables related to location
updates. This can be explained because by the facts that LU T is influenced
by all other LU variables, and that mobility patterns are very similar for home,
roaming and visiting users. All the correlation metrics indicate that there is strong
correlation between these variables.

Figure 3.15 shows the correlation matrix for the derivatives of the traffic variables. We
generally observe weaker correlations than those in Figure 3.14, but there are specific
variables whose growth rates show strong correlation. More specifically, BIRO-BAIC and
BOIC-BOIH pairs exhibit similar growth patterns, while the growth of LU T appears
to correlate with that of T11, T21, B1F and CFU. This can be explained by the fact
that when a mobile attempts to use one of these services, it is likely to trigger a location
update request due to mobility.

One the other hand, the seasonal components of the traffic variables exhibit higher
correlations than the original time series, as illustrated in Figure 3.16, indicating that
they have similar periodic behaviour. One such highly correlated pair is BORO-OCCF
which can be attributed to the network configuration which redirects incoming calls
when call barring has been enabled. Moreover, the seasonality of the CFU and CFNR
signaling requests appears to be similar and can be attributed to the similarity of their
functionality. There is also a strong correlation between LU R and LU V, implying
that subscribers have similar mobility patterns when roaming. Finally, an interesting
finding is the high correlation between the seasonality of T21 and location registrations
(LR). This can be explained if we consider that most mobile networks provide SMS
notifications (e.g. for missed calls) to their subscribers when they become available
again, thus coinciding with location registration requests.
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Figure 3.15.: Visualisation of the correlation matrix of the derivatives of the HLR traffic
variables constructed using the mean value of the three correlation coeffi-
cients. The blue and red values correspond to higher positive and negative
correlation respectively. The lower part of the matrix visually presents
the correlation strength, while the upper part shows the actual correlation
value.
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Figure 3.16.: Visualisation of the correlation matrix of the seasonal components of the
HLR traffic variables constructed using the mean value of the three coeffi-
cient. The blue and red values correspond to higher positive and negative
correlation respectively. The lower part of the matrix visually presents
the correlation strength, while the upper part shows the actual correlation
value.
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Figure 3.17.: Visualisation of the correlation matrix of the trend components of the HLR
variables, constructed using the mean of the three coefficients. The blue
and red values correspond to higher positive and negative correlation re-
spectively. The lower part of the matrix visually presents the correlation
strength, while the upper part shows the actual correlation value.
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Similarly, the trend correlation matrix in Figure 3.17 illustrates that there is a cluster
which contains LU V, LU R, BIRO and BAIC, due to the use of these signaling requests
when roaming in other networks and countries. BORO, CFNR, OCCF, LU T, T11,
BAOC and CFU form another cluster of very strong correlations, which can be attributed
to the fact that when users are actively using their mobile device (T11, LU T) they are
more likely to enable/disable other services of the network (i.e. BORO, CFNR, OCCF,
BAOC and CFU) as well. Interestingly enough, the trends of T11 and T21 are weakly
correlated, implying that users may prefer to use one service over the other in certain
days of the week.

The remainder correlation matrix in Figure 3.18 shows very few correlations between
the variables. This is because the remainders are the result of minor random deviations
from the normal profile and hence they do not follow a specific pattern. Despite this,
there are two strongly correlated pairs, namely BOIC-BOIH and BAIC-BORO, indicat-
ing that the majority of users use these services together. This could be the result of a
configuration in the network that provides a unified command to handle both services.
Finally, there were some correlation pairs which were not outlined in the above analysis.
These pairs either demonstrated mediocre correlation values or were strongly correlated
with other variables/features and thus their relationship was deemed less significant.

3.3. Analysis of the MSC Dataset

This dataset was provided by TIIT and contains 6 traffic variables that relate to users’
registration and authentication procedures for a period of three days with 15 minutes
granularity. The dataset contains signaling traces from ∼ 60 MSC components of TI’s
mobile network whose details are as follows: 3 of the traffic variables measure user initi-
ated requests sent from each MSC to its corresponding HLR, and the other 3 variables
measure the volume of the requests that were successfully served by the HLRs. The
major difference between this dataset and the one from COSMOTE is that it allows us
to process the data on a per region basis, since each MSC serves a specific geographical
area, and typically each network region is served by a small number of MSCs (∼ 1−10).
The traffic variables contained in the dataset are described in Table 3.2, and the time
series of four of them are depicted in Figure 3.19.

3.3.1. Decomposition

As with the previous dataset, the individual components of the time series are computed
and analysed. We present here results for the two variables with the highest entropy
values, which are NAutReqTot and NLocNRgTot. From Figures 3.20 and 3.21 one can
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Figure 3.18.: Visualisation of the correlation matrix of remainder components of the
HLR variables, constructed using the mean value of the three correlation
coefficients. The blue and red values correspond to higher positive and
negative correlation respectively. The lower part of the matrix visually
presents the correlation strength, while the upper part shows the actual
correlation value.
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Table 3.2.: Traffic variables from TI dataset along with their description.

Name Description

NLocNRgTot Total number of location update attempts from non-registered users.

NLocNRgSucc Successful location update attempts from non-registered users.

NLocOldTot Total number of location update attempts from registered users.

NLocOldSucc Successful location update attempts from registered users.

NAutReqTot Total number of authentication requests sent.

NAutReqSucc Successful authentication requests sent.

Figure 3.19.: Time series of the signaling traffic variables NLocNRgTot, NLocNRgSucc,
NAutReqTot, and NAutReqSucc (Table 3.2) for a period of 3 days with
granularity of 15 minutes.

observe that the time series of both variables are smooth, showing the time-dependent
variations which become more pronounced in the seasonal component. On the other
hand, the trend components show the long-term increase or decrease in the data, showing
for example a gradual increase from the middle of the first day in Figure 3.20 and from
the last day in Figure 3.21. Finally, the remainder component shows the short-term
variations and can be used to detect anomalies that cause sudden changes in traffic
volume.
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Figure 3.20.: Time series of the traffic variable NAutReqTot, from the TI Dataset, along
with its seasonal, trend and remainder components.
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Figure 3.21.: Time series of the traffic variable NLocNRgTot, from the TI Dataset, along
with its seasonal, trend and remainder components.
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Multidimensional Scaling

Next we project the data into the 2-dimensional space, using MDS with the Canberra
distance, in order to examine whether the dataset will produce a consistent shape that
could be used as a reference model for the anomaly detection algorithms. This is con-
firmed in Figure 3.22, where it can be observed that the dataset exhibits very strong
periodicity, showing almost identical shapes for the three days except for a small devia-
tion on day 1.

Entropy

Examining the information content of the traffic variables in Table 3.3 shows that all
the variables have very large entropy values. Also, the entropy of the seasonal and trend
components are almost identical, suggesting that the time series are very similar. This is
also verified by the correlation matrix, shown in Figure 3.25. All the features appear to
be suitable for anomaly detection, but clearly they contain redundant information which
is better identified through the correlation analysis presented in the following section.

Table 3.3.: Entropy of all traffic variables and extracted features from TI dataset, where
O denotes the original time series, D their derivatives, and T, S,R are re-
spectively the trend, seasonal and remainder components. The values range
from 0 to 5.663.

Name H(O) H(D) H(T) H(S) H(R)

NLocNRgTot 5.663 5.645 5.663 3.178 5.663

NLocNRgSucc 5.653 5.587 5.663 3.178 5.663

NLocOldTot 5.658 5.631 5.663 3.178 5.663

NLocOldSucc 5.663 5.635 5.663 3.178 5.663

NAutReqTot 5.663 5.65 5.663 3.178 5.663

NAutReqSucc 5.663 5.64 5.663 3.178 5.663

3.3.2. Correlation Analysis

Figure 3.23 visualises the correlation matrices of the original traffic variables using Pear-
son’s, Spearman’s and Kendall’s coefficients. In all cases, there is very strong correlation
between the attempt-success pairs, which provides a useful feature for the detection of
signaling DoS attacks that generate service requests (i.e. attempts) but do not complete
the transactions (i.e. successes). In this case, correlation does imply causation, since an
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Figure 3.22.: Projection of all the traffic instances from TI dataset in the 2-dimensional
space using MDS with the Canberra distance metric: (a)-(c) correspond
to the three days contained in the dataset, and (d) shows all the days
combined.
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increase in the number of successfully served requests (e.g., authentication requests) is
strongly influenced by the number of attempts made. Furthermore, both Pearson’s and
Spearman’s coefficients show a strong coupling between the authentication procedure
and the location updates sent by registered users, both between attempts and successes.
Interestingly, the same level of correlation is not observed for non-registered users. More-
over, NLocNRgTot and NLocNRgSucc appear to be correlated with the authentication
attempts and successes. However, this is significant only when using Spearman’s coeffi-
cient, and less with Pearson’s, while Kendall’s yields the smallest value. This is expected
since Kendall’s coefficient is more suitable for ordinal-level variables.

The correlation matrix of the derivatives of the time series is shown in Figure 3.24,
where we can see that the growth rate of the attempt-success pairs follows a linear
relationship, since Pearson’s coefficient is 1. The reason for this linearity is that the
volume of successfully served requests is merely a proportion of the volume of the at-
tempted transactions. Figures 3.24(a) and (b) also show that the growth of all the traffic
variables is strongly associated, which is due to the fact that both registered and unreg-
istered subscribers trigger location registrations and authentication attempts at similar
rates during different times of the day. This is an important observation that will be
utilised in Section 3.3.3 where artificial anomalies are injected in the traffic.

Apart from the correlated pairs (attempt-success) that are seen in most of the features,
Figure 3.25 reveals a very strong correlation (∼ 1) between the seasonal components of
NLocNRgTot, NLocNRgSucc, NLocOldTot and NLocOldSucc. These features form a
correlation cluster which is justified considering the mobility habits of the network sub-
scribers (e.g. commuting to work). More specifically, the volume of location registration
requests is proportional to the mobility of subscribers, and both registered and unreg-
istered users exhibit similar mobility patterns. In Figure 3.26 we see that all pairs of
variables exhibit a strong correlation ∼ 1 in the trend component, which is consistent
with Figures 3.19, 3.20 and 3.21, where the variables appear to follow similar daily trend;
since they all mandate very similar functions of the network, their trend is controlled by
the same subscriber habits (e.g. increased usage in specific days of the month). Similarly,
Figure 3.27 shows very strong linear correlations between all the remainder components
of the traffic variables. This indicates that a benign usage spike in the network traffic
will affect all the variables, whereas a malicious one may affect only few of them.

3.3.3. Correlation Results During Abnormal Incidents

We expect that signaling anomalies in mobile networks will affect a limited number of
traffic variables, and this observation could assist in the identification of such anomalies.
Specifically, we expect that during a signaling DoS attack, the traffic variables that are
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(a) Pearson’s Correlation (b) Spearman’s Correlation

(c) Kendall’s Correlation (d) Collective Correlation

Figure 3.23.: Visualisation of the correlation matrices for the traffic variables of the TI
dataset. The blue and red values correspond to high positive and negative
correlations respectively. The lower triangle of the matrix visually presents
the correlation strength, while the upper part shows the actual values. The
collective correlation is the mean value of the three correlation coefficients.
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(a) Pearson’s Correlation (b) Spearman’s Correlation

(c) Kendall’s Correlation (d) Collective Correlation

Figure 3.24.: Visualisation of the correlation matrices for derivative of the traffic vari-
ables of the TI dataset. The blue and red values correspond to high positive
and negative correlations, respectively. The lower triangle of the matrix
visually presents the correlation strength, while the upper part shows the
actual correlation values. The collective correlation is the mean value of
the other three correlation coefficients.
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(a) Pearson’s Correlation (b) Spearman’s Correlation

(c) Kendall’s Correlation (d) Collective Correlation

Figure 3.25.: Visualisation of the correlation matrices for the seasonal components of the
traffic variables of the TI dataset. The blue and red values correspond to
high positive and negative correlations, respectively. The lower triangle of
the matrix visually presents the correlation strength, while the upper part
shows the actual correlation values. The collective correlation is the mean
value of the other three correlation coefficients.
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(a) Pearson’s Correlation (b) Spearman’s Correlation

(c) Kendall’s Correlation (d) Collective Correlation

Figure 3.26.: Visualisation of the correlation matrices for the trend components of the
traffic variables of the TI dataset. The blue and red values correspond to
high positive and negative correlations, respectively. The lower triangle of
the matrix visually presents the correlation strength, while the upper part
shows the actual correlation values. The collective correlation is the mean
value of the other three correlation coefficients.
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(a) Pearson’s Correlation (b) Spearman’s Correlation

(c) Kendall’s Correlation (d) Collective Correlation

Figure 3.27.: Visualisation of the correlation matrices for the remainder components of
traffic variables of the TI dataset. The blue and red values correspond
to higher positive and negative correlation respectively. The blue and red
values correspond to high positive and negative correlations, respectively.
The lower triangle of the matrix visually presents the correlation strength,
while the upper part shows the actual correlation values. The collective
correlation is the mean value of the other three correlation coefficients.

67



exploited by the attacker will deviate from their normal correlations with other variables,
hence providing useful features for anomaly detection algorithms. In order to validate
this hypothesis, we conducted a number of experiments, one of which is presented here,
where the original TI dataset was modified to include three anomalous instances. The
values of these instances were selected based on the literature [2, 6, 41,47,105].

The synthetic attack dataset was created assuming that an attacker generates excessive
number of requests for the traffic variable NAutReqTot. The results in Figure 3.28
shows that the correlations between NAutReqTot and the other variables are significantly
affected. Further, the deviations from the expected correlations are more pronounced
in the seasonal component of the time series and the derivative. These two features are
more sensitive to respectively long and short term changes and hence should be used
as inputs to the anomaly detection algorithms. Finally, we see in Figure 3.29 that the
anomalous instances 100, 101, 102 deviate from the normal U shape that demonstrates
a pattern of periodic behaviour with a 24 hour period, and they appear as outliers.

3.4. Summary and Future Work

This chapter presented and analysed features extracted from signalling traces collected
from 3G/4G operational mobile networks and to be used by the anomaly detection
algorithms in WP4. Towards this goal, the attributes of the original traffic variables
and the extracted features were examined to gain an understanding of their reference
behaviour and identify the information they provide about the network. The features
were extracted using techniques such as time series decomposition and dimensionality
reduction. Furthermore, we examined the correlations between the extracted features,
and identified some underlying patterns in the signaling traffic. This was achieved by
visualising the relationships between the variables, based on different correlation coeffi-
cients, under normal conditions as well as in the presence of anomalous traffic instances.
Moreover, our analysis of anomalous traffic instances revealed that the derivatives and
seasonal component features, in addition to the MDS technique are the most capable of
revealing deviations from standard behaviour.

The work presented in this chapter will be extended in several directions, and the
results will be included in the final version of deliverable D5.1.2. First, the decomposition
analysis of the traffic variables will be performed on data traces over longer periods of
time when they become available. This will reveal, for instance, if there is seasonality
hidden within larger periods of time (e.g. week, month, etc.) apart from the 24-hour
periodicity observed in the current dataset. In turn, this allows anomaly detection
algorithms to identify both short and long term anomalies that may otherwise be hidden
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(a) (b) (c)

(d) (e)

Figure 3.28.: Visualisation of the collective correlation matrices for the MSC dataset
when 3 anomalous instances are injected: (a) original variables, (b) their
derivatives, and (c), (d) and (e) are the seasonal, trend and remainder
components, respectively. The red box indicates the correlation vector of
the affected traffic variable.
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Days

Figure 3.29.: Projection of the MSC-attack dataset in 2D using MDS with Canberra
distance. The anomalies are observed on the second day in (b) and (d).
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in the raw data. We also plan to combine the results of the correlation analysis with
the entropy measurements in order to build upon and improve existing dimensionality
reduction techniques. The planned work also includes the comparison of the developed
dimensionality reduction method with popular techniques such as mRMR. The results
presented in this report will be utilised by the anomaly detection algorithms developed
in WP4 in order to reduce the monitored variables, process the data in a timely manner
and accurately detect signaling anomalies.
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4. Graph-based Correlation

4.1. Introduction

This chapter presents a graph-based approach for abnormal event detection using billing
related data, which are known as call detail records (CDR) in 3GPP standards. The
main methodology proposed in the context of NEMESYS is the transformation of the
raw input data into graph representations using social and k-partite graphs:

Social graphs: Each vertex of this graph represents a user, while the edges represent
user interactions, e.g. voice calls, data transfers and SMS. Figure 4.7 shows an
example social graph that shows two different user clusters and the interactions
between them.

K-partite graphs: Each vertex of this graph represents a different entity from a selected
set of the data attributes. These attributes can be users, dates, and communi-
cation types, e.g. SMS, voice calls, and Internet traffic. There are multiple sets,
and therefore multiple attributes, represented by the graph, and graph edges cor-
respond to interactions between entities in different sets. See Figure 4.4 for an
example k-partite graph constructed from the CDR data analysed in this chapter.

After the data is transformed as a graph, we utilise similarity or distance measures
between graphs, such as the ones presented in Section 2.3.4, which are built based on
parameters such as time or users. Based on these measures, we find the events or users
that deviate from the normal behaviour, as presented in Figure 4.1. We discuss social
graphs and k-partite graphs in more detail in the following sections, after providing some
information on the dataset used to illustrate the graph-based approaches.

4.2. The IEEE VAST’08 CDR dataset

The IEEE Symposium on Visual Analytics Science and Technology (VAST) annually
holds a data analytics challenge, and releases a number of datasets to be used by the
competitors. For the IEEE VAST 2008 challenge, four heterogeneous synthetic datasets
were provided; we use the cellphone calls dataset from VAST’08 to illustrate our proposed
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Figure 4.1.: The architecture of the graph-based abnormal event detection scheme.

Event no. From To Date-Time Duration (sec.) Cell id

1 349 23 20060601 0008 1634 1
2 379 364 20060601 0011 640 24
3 392 27 20060601 0012 1182 29
4 17 339 20060601 0014 578 23
5 272 251 20060601 0015 887 29
6 282 13 20060601 0015 1015 19
7 28 5 20060601 0045 1175 22
8 209 71 20060601 0054 1120 28
9 80 120 20060601 0058 588 11

Table 4.1.: Sample events from the IEEE VAST’08 dataset. Each row is a network event,
i.e. a mobile voice call, and the columns are the event attributes.

graph-based anomaly detection and correlation methods. Table 4.1 shows a sample from
the VAST’08 dataset. This dataset contains the following attributes for each event, i.e.
each call record:

• From is the unique identifier for the subscriber who initiated the voice call,

• To is the unique identifier for the subscriber who received the call,

• Datetime is the timestamp of the event, i.e. when the call was initiated,

• Duration is the length of the call in seconds, and

• Cell id is the unique identifier of the cell in which the caller was camping when
the call was initiated.
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4.3. Social Graphs

We consider network events occurring in the mobile network, and model this activity
as a directional graph that contains all subscribers and network events. An event in
this context is a single “billable” occurrence of network service usage as captured by
components in the mobile core network for charging and billing purposes. For instance,
when a mobile user makes a voice call, an event is generated which contains information
about that phone call, such as the call duration, the date and time when the call was
made, the number that was called, etc. Such an event is called a Call Detail Record
(CDR), and they are suitable for the detection and correlation of suspicious service
usage patterns in order to uncover attacks that are reflected in the billing records. The
most common attributes in CDRs are:

• Originating subscriber, i.e. caller,

• Terminating subscriber, i.e. callee,

• Event timestamp,

• Service usage duration, and

• Service type (voice call, SMS, data, etc.).

Let us define the social graph that captures the network activity as the directed graph
G = (V, E, L, F ), which is sampled over time using a constant period dt. Every time
instance ti, where dt = ti+1− ti, results in a new graph Gi = (Vi, Ei, Li, Fi), where Vi =
{v0, v1, . . . , vn} is the set of nodes representing the subscribers at that time instance,
and Ei = {e0, e1, . . . , ek} are the directed interactions between the subscribers, e.g.
voice calls and SMS. Furthermore, Gi contains a set of labels Li = {l0, l1, . . . , lz}, where
each label lj , j ∈ [1, z] corresponds to a network service (e.g. voice call, SMS). Finally,
we define the mapping function Fi : Ei → Li, which assigns a label to each edge.

Below, we discuss how social graphs can be used to analyse network activity in order
to uncover anomalous behaviour such as SMS spam.

4.3.1. Analysis of SMS spam

Mobile malware is clearly on the rise [33, 55, 94], and one of the most common mobile
malware is SMS spammers, which operate as follows. Initially, the user receives an SMS
with a malicious URL, or clicks on a malicious advertisement that links to a malicious
URL. As a result of visiting the malicious website, the mobile is infected with malware,
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which often masquerades as a benign application. The malware usually turns the infected
device into a botclient, which receives command and control (C2) messages from one
or more C2 servers, allowing the botmaster control over the behaviour of the infected
devices, i.e. the mobile botnet. The botclient normally receives a list of mobile numbers
and spam messages [99], upon which it sends the spam SMS messages from the list to the
given mobile numbers. This procedure is repeated periodically, possibly with different
lists of numbers and messages depending on the configuration of the botnet and the
instructions of the botmaster.

Social graphs are useful for the detection of SMS spam activity in the network, and
also for the identification of the infected users, enabling the service provider to inform
the infected users and to mitigate the effects of the SMS spam, for example by dropping
the SMS messages identified as spam at the SMS-C server. In order to demonstrate
this procedure, two synthetic datasets were generated: (i) normal SMS traffic, shown in
Figure 4.3(a), and (ii) spam SMS traffic sent from one compromised device, shown in
Figure 4.3(b). For the synthetic generation of CDR records, the social characteristics of
user behaviour were taken into account. Specifically, the social graph created from the
CDR records has a structure in which individuals within communities tend to be linked
via strong ties as represented by the large number of communication events between
them, whereas communities tend to be connected to other communities via weak ties [85].
This behavior is captured in Figure 4.3(a), where four distinct communities with a total
size of 200 users were synthetically generated. The intra-community communication rate
is high (3–6 SMS per user), and it is uniformly distributed within the community, while
the number of inter-community communications is small (0.02–0.06 SMS per user) [82].
For the generation of the spam SMS dataset, a compromised device was added to the
network, which sent SMS to a list of 50 random numbers [53,61] not necessarily belonging
to the same community. This behaviour is captured in Figure 4.3(b), which shows that
user 109 sends spam SMS to a specific set of users that belong to different communities.
By comparing the graphs for expected or normal behaviour and for what is currently
observed in the network, anomalies such as SMS spam can be detected, as illustrated by
this example.

4.4. K-partite Graphs

In this section, we discuss how k-partite graphs can be used to represent network activity
and for network analysis. Unlike the social graph based method presented above, the
k-partite graph captures all attributes of network activity, including cell ids and date
information. Thus, the k-partite graph model takes into account more information than
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Figure 4.2.: The modus-operandi of the SMS spam malware: 1) The user receives an
SMS with a malicious URL. 2) He visits the URL and gets infected with
malware. 3) The infected device receives instructions from the C2 server.
4) The infected device sends the spam SMS messages to mobile numbers.
5) The infected device retrieves a new list of numbers or waits for further
instructions.
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(a) Normal SMS traffic. The nodes of the
graph represent users, while the edges rep-
resent SMS exchanged between users. We
can identify four distinct communities based
on social interactions.

(b) Spam SMS traffic. User 109 sends spam
SMS to multiple users belonging to different
communities.

Figure 4.3.: Social graphs capturing SMS-based activity in the mobile network. This
example is based on synthetically generated data.

the social graph, and can be utilised for detection of a wider set of abnormal events,
including botnets and changes in user behaviour.

In k-partite graphs, vertices are divided into k disjoint groups {V1, . . . , , Vk}, such that
no edge connects the vertices in the same group. More formally, a k-partite graph G is
defined as: G = (V, E), where V = V1 ∪ V2 ∪ . . . Vk, Vj = {ni | 1 ≤ i ≤ Nj}, ∀ j ∈ [1, k],

Nj is the number of vertices in the j-th vertex group Vj , and E ⊂
k⋃
j=2
{V1 × Vj}. The

CDR data is mapped to a k-partite graph in the following way: nodes in V1 correspond to
unique CDR records, while nodes in Vj>1 correspond to attribute values for each record.
Therefore, a k-partite graph shows the connections of the CDR records to attribute
values of k − 1 different record attributes.

Figure 4.4 shows a very simple k-partite graph built using the CDR records given in
Table 4.2. Since the example CDR set has 4 attributes, the k-partite graph has 4 disjoint
groups, represented with different colors in the figure. The records are represented by
the two “event id” vertices colored in white, and the data is captured in the form of
edges connecting each record to its attribute values.
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Event id From To Date

0 1 2 2006-10-01
1 1 3 2006-10-02

Table 4.2.: Sample CDR records used to illustrate how k-partite graphs are constructed
from CDR records. Note that the number of attributes and records in the
dataset have been significantly reduced for this example. We have added the
“event id” attribute to the dataset as a unique identifier for each record.

1

2

2

3

1 To

Date

From

Id

2006-10-01

2006-10-02

Figure 4.4.: The k-partite graph representation of the CDR dataset presented in Ta-
ble 4.2. The “event id” nodes uniquely identify each CDR record, and are
connected to the attribute values. Different attributes are shown with dif-
ferent colors.
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4.5. Graph-based Abnormal Event Detection

This section presents the procedure of applying the graph representations of the raw
data for abnormal event detection. The main procedure consists of the following steps:

• Build a series of graphs based on specific parameters, such as time stamp, or
signalling message.

• Use graph matching to find the distances between every pair of graphs.

• Detect abnormal graphs, which deviate from the normal behaviour. This abnormal
event detection procedure is based on multi-dimensional scaling (MDS).

Note that we illustrate the procedure of “constructing a sequence of graphs capturing
network activity at different instances in time, applying a graph matching method to the
graphs, and performing anomaly detection based on the similarity score of the graphs”
using k-partite graphs only. However, the procedure is the same for social graphs, which
are useful to capture anomalies in the social structure of the mobile users.

4.5.1. Building a Graph Sequence for Abnormal Event Detection

A series of graphs is created in order to represent changes based on specific parameters.
The assumption is that abnormal events will cause large changes in the graph weights
and/or structure, which can be detected automatically utilising the graph matching
techniques discussed in Section 2.3.4.

There are many ways to build the series of graphs based on the task at hand. For
example, in the case that the task is detection of anomalous periods of activity, the
parameter by which the sequence of graphs is created is time, i.e. each graph represents
the activity (signalling or CDR) over a different time point. A specific list of parameters
that are utilised for building of the graph sequence is presented below:

• Time: Detection of abnormal time periods

• User: Detection of abnormal users, whose behaviour deviates from the rest

• Time/User: Detection of time periods during which a specific user changed be-
haviour.

• Signalling Message: Detection of abnormal signalling messages, whose behaviour
deviates from the rest.
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Figure 4.5.: Creation of a sequence of k-partite graphs utilising the time parameter.
Each graph represents the k-partite representation of the CDR activity over
a specific time instance.

Figure 4.6.: Creation of a sequence of k-partite graphs utilising the user parameter. Each
graph represents the k-partite representation of the CDR activity of a spe-
cific user.

It should be noted that this list is not exhaustive, but is found to be the most useful
in detecting anomalies, and is the one implemented in the abnormal event detection
prototype.

Examples of building the sequence of graphs are depicted in Figures 4.5 and 4.6. Fig-
ure 4.5 shows an example of graph sequence built taking into account the time parameter,
i.e. each graph in the sequence represents the CDR activity of a specific time instance,
while Figure 4.5 illustrates an example of graph sequence built taking into account the
user parameter, i.e. each graph represents the CDR activity of a specific user.

4.5.2. Graph Matching

The use of graph matching is the first step towards abnormal event detection. The main
goal is to utilise the generated graph sequence so as to find specific graphs which are very
different from the rest, and thus deviate from the normal behaviour. The assumption is
that abnormal events, such as DDoS attack or spam SMS campaigns, create graphs in
which the structure and/or the weights of its elements are distinctly different from the
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rest of the graphs, and thus can be detected through graph matching methodologies.
Section 2.3.4 presented a review of the graph matching techniques that have been

proposed in the literature. Each of the proposed methods takes as input two graphs
G1, G2 ∈ G, and returns their structural similarity or dissimilarity (distance), i.e. d :
G × G → R+, where G is the domain of graphs, and R+ is the space of positive real
numbers. Following this definition, and using the generated graph sequence G1, . . . , GN ,
the distance matrix D = [dij ] is built, where each element dij represents the distance of
the graphs Gi, Gj , i.e. dij = d(Gi, Gj).

For the exact calculation of the distance between two graphs, Graph Edit Distance
(GED) methodologies are utilised (cf. Section 2.3.4), due to their simplicity, speed, and
accuracy in finding anomalies. Specifically two GED distance metrics are used. The first,
defined in Eq. 2.15, takes into account only the structural characteristics of the graphs,
namely the number of nodes and edges of graph Gi and the number of the common
nodes and edges in the two graphs. Thus the distance function contains the number of
graph operations that happens through the transition Gi → Gj , i.e. the aggregation of
all the graph’s node and edge deletions and insertions. The main disadvantage of this
GED metric is that it does not take into account the weights of the input graphs. Thus,
it will give the same result in graphs which have the same edge connections, but different
weights on them. In such cases, it is more appropriate to use a distance formula that
embeds the difference of the edge weights. One such metric which takes into account
the Euclidian distances of the weights of the adjacency matrices is given by [64]:

dij =

√√√√ k∑
r=1

k∑
c=r+1

(Hi (r, c)−Hj (r, c))2 (4.1)

Two additional similarity metrics from the literature have also been considered. These
metrics have been proposed for the comparison of two sets, but can also be applied to
graphs. Specifically, they are applied in order to find similarities between users and time
periods. The first is the Jaccard index [62] which is defined as follows:

sJI (Gk, Gz) =
|Vk ∩ Vz|
|Vk ∪ Vz|

(4.2)

This metric captures the degree in which the two sets of nodes have common entries, or
in other words the two graphs have common behaviour.

Finally, the last similarity metric is the Sorensen-Dice index [107], which is defined as
follows:

sSD (Gk, Gz) =
2 |Vk ∩ Vz|
|Vk|+ |Vz|

(4.3)
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4.5.3. Abnormal event detection using k-partite graphs

As described earlier, the CDR dataset comes from the IEEE VAST 2008 challenge. In
this challenge, a group of users changed their mobile devices in the last three days of the
monitoring period. The goal of the challenge was to detect this behaviour through visual
analytics techniques. The procedure for detecting anomalies utilising graph representa-
tions can be summarised in the following: (i) create a sequence of graphs G1, · · · , GN
based on a specific parameter, (ii) calculate the pairwise distances in order to construct
the distance matrix D = [dij ], and (iii) use visualisation methods to identify anoma-
lous graphs in the sequence. However, the last step requires the initial graphs to be
transformed into a low dimensional space, using any of the dimensionality reduction
techniques described in Section 2.2.4. The results presented in the sequel are obtained
by applying the MDS method (cf. Section 2.2.4) which produces N 2D coordinates
whose distances are proportional to the distances between the graphs.

The first objective is to detect abnormal time periods, which means that the sequence
of graphs has to be created taking into account the time parameter. Thus, each k-partite
graph in the sequence represents the CDR activity of one hour, to a total of ten days.
The result is depicted in Figure 4.7. Two clusters have emerged, one representing the
CDR activity in the first seven days, and one in the last three days. This means that the
CDR activity changed in the last three days, a fact which needs further investigation.

In addition to the hour parameter, the day parameter has also been utilised to create
the sequence of graphs. Thus, each k-partite graph in the sequence represents the CDR
activity of one day, to a total of ten days. Two GED based distance metrics are used,
which are described in Eqs. (2.15) and (4.1). The result of applying these two distance
metrics and the MDS method is depicted in Figure 4.8. In both cases, the differentiation
in the last three days is apparent. Indeed in the last three days, a certain set of users
changed phone numbers and continued to use the network services for communication.
This behaviour is suspicious and needs further investigation, which could be facilitated
through the visualisation methods developed in T5.2. The use of the day granularity
helps in the analysis of past behaviour, root cause analysis, and identification of malware
infection vectors.

The second objective is the detection of anomalous users, i.e. users that have different
behaviour from the rest. To this end, the sequence of graphs is built based on the user
parameter. Thus, each k-partite graph in the sequence represents the CDR activity of
a specific user. As in the previous case, the two GED metrics (2.15) and (4.1) are used.
MDS is then applied to the distance matrix derived from these metrics, in order to project
the data onto the 2D plane, and create user friendly visualisation of the behaviour of
the users. As shown in Figure 4.9, anomalous users stand out from the crowd of normal
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Last 3 days First 7 days

Figure 4.7.: Application of the abnormal event detection technique which utilises MDS
and dissimilarity-based graph matching. The sequence of graphs is created
using the hour parameter, i.e. each graph represents one hour of CDR
activity. Two clusters have emerged, one representing the CDR activity in
the first seven days, and one in the last three days.

users, and are easily detected using the proposed approach. Specifically, the following
users are found to be anomalous in Figure 4.9: 1,2,3,5,306, and 309. According to the
solution of the VAST challenge, these users are indeed included in the set of anomalous
users. This demonstrates the efficiency of the proposed approach in finding anomalous
dates and users.

In addition to MDS, similarity matrices have also been used to illustrate similarities
between distinct users and time periods. The results of the application of the Jaccard
index and SorensenDice coefficient similarity metrics, described in Section 4.5.2, are
depicted in Figures 4.10 and 4.11. Specifically, Figure 4.10 shows the similarities between
multiple graphs, each representing the CDR activity of one day in the CDR dataset.
Filtering has been applied in order to focus on the most important events. It is clear
in both metrics that two distinct clusters of activity are observed, one in the first seven
days, and one in the last three days. This type of behaviour was also apparent in the
MDS representation depicted in Figure 4.8, and is indeed part of the solution of the
challenge.

Figure 4.11 illustrates the result of the application of the similarity metrics to the
most active users during the ten day period. The aim is the identification of users
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Normal time instancesAnomalous time instances

Normal time instances
Anomalous time instances

Figure 4.8.: Application of the MDS abnormal event detection method and the GED
in Eqs. (2.15) and (4.1). The sequence of graphs is created using the day
parameter, i.e. each graph represents one day of CDR activity.
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Normal users

Anomalous users

Normal users

Anomalous users 

(distinctly different)

Figure 4.9.: Application of the MDS abnormal event detection method and the GED in
Eqs. (2.15) and (4.1). The sequence of graphs is created utilising the user
parameter, i.e. each graph represents the CDR activity of one user. The
anomalous users are users: 1,2,3,5,306, and 309. These users are indeed
responsible for the anomalies observed in the VAST 2008 challenge.
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(a) Jaccard index (b) Sorensen-Dice coefficient

Figure 4.10.: The matrices between the ten days of CDR activity. Red color represents
high and yellow low similarity between the days of the corresponding row
and column. Two clusters are clearly visible, one regarding the first seven
days and one for the last three.
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(a) Jaccard index (b) Sorensen-Dice coefficient

Figure 4.11.: The similarity matrices between the most active users for the days of
CDR activity. Red color represents high and yellow low similarity between
the users of the corresponding row and column. Users (1,309), (2,397),
(5,306),(3,360) are very similar, while they have no similarities with other
users.
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with common behaviour, which leads to the detection of interesting patterns for further
analysis. In this specific case, users (1,309), (2,397), and (5,306) are very similar. Indeed
according to the solution of the VAST 2008 challenge, these users are the ones responsible
for the change in the CDR activity of the last three days. Specifically, these pairs of Ids
belong to users that were active in distinct periods, i.e in the first seven and the last
three days, while they also have high similarity, since they communicate with the same
set of users. This indicates that these pairs of mobile devices Ids were actually used
by the same users. Also, these users show another interesting similar pattern, namely
each user does not have high similarity with any other users, but one. This is evident in
the similarity matrices of Figure 4.11 by the white lines that run through it. Observing
these white lines, we can identify another pair of users (3,360) showing high similarity.
These users are indeed contributing to the anomalies hidden in the VAST CDR dataset.

4.6. Summary and Future Work

This chapter presented a graph correlation approach utilised in NEMESYS as a pre-
processing step towards anomaly detection, which takes place in WP4. Towards this end,
billing related records (CDR) were transformed into sequences of graph representations,
where each graph in the sequence represents either (i) the CDR activity in a specific
time instance, or (ii) the CDR activity of one user for the total time period. The goal
in the first case is the detection of time instances that are distinctly different from the
rest, while the in the second case is the detection of users that have different behaviour
from the rest. For the comparison between the graphs in the generated sequence, graph
matching techniques were applied. Then dimensionally reduction through MDS was
used to transform the calculated differences into a user-friendly 2D visual representation,
allowing to detect anomalies as outliers in the 2D space. This correlation approach was
applied on the VAST2008 challenge regarding CDR analysis, and was found to be very
efficient in identifying distinctly different users and time instances.

Future work includes the application of additional graph matching and dimensionality
reduction techniques, so as to provide feature representations in which the graphs are
distinctly separated, hence increasing the accuracy of the anomaly detection algorithms.
We will also investigate how to identify the minimum number of features that most
accurately describe the correlation results, without much loss of information, which
may require reducing the dimensionality of data to more than 2. Further directions
include the application of clustering methods in the features extracted from the graph
correlation analysis, allowing to separate the space into regions of distinct behaviour.
This separation reduces the size of the dataset, and is an efficient method for noise
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reduction for the anomaly detection algorithms. Finally, graph sequences will be created
for each user, in order to identify the time periods in which each user changed behaviour.
This is an important step that must be applied before the application of root cause
analysis and attack attribution algorithms.
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5. A Model-based Approach to Anomaly Detection

5.1. Introduction

Research in communication systems has a solid background of modelling methodologies
such as stochastic processes, queueing systems, graph models, etc. These methods are
routinely and successfully utilised to describe communication systems and to analyse, op-
timise and improve their performance, but they are rarely used for security. The typical
approach for anomaly detection in networks is data driven, whereby detection is per-
formed by collecting and analysing large volumes of data, and neglecting the underlying
communication system.

In this chapter we develop a quantitative model-based framework for correlating mo-
bile user activities with their impact on different network components so as to perform
anomaly detection more effectively and reduce false alarms. The approach incorporates
modelling of the mobile network at different levels of abstraction to properly represent
the components and the processes that are prone to anomalous behaviour. The natural
choice for this approach is multi-class queueing models [35, 39]. Such models require
average service times and task sequences to be known, and can provide estimates of
both averages and variances of the times that it would take to undertake signalling or
call processing functions, as well as of access times to web sites and other services, in
the presence of a large population of mobile users in the network. Thus it is more suited
for network threats that map into congestion in either the signaling or data planes. The
aim is to allow anomaly detection algorithms to obtain quick estimates of the impact of
a suspected set of users, so that abnormal but non performance impacting behaviours
are not incorrectly flagged as malicious. Specifically, for a subset of users which are
identified by the anomaly detection algorithm, if the estimated average quantities for
a population scaled up to the current observed numbers in the network, for the same
user set, deviates significantly from the current measured values in the network, then
one can infer some level of anomaly. The estimates for the scaled up population can be
calculated from the queueing models in a very fast and straightforward manner. Finally,
the modelling approach allows to predict the future effect of a suspected set of users on
the network (e.g. during rush hour), so that appropriate mitigation steps could be taken
in advance.
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5.1.1. Motivation

The model-based approach involves representing how the communication system func-
tions at the level of each mobile connection and is motivated by several factors. First,
the number of mobile users that we need to monitor and deal with in real time is very
large. Thus a clear and understandable uniform approach is needed to deal with each
individual mobile call, emphasising the similarities and common parameters. Anomalies
can then be detected via deviations from normal parameters or behaviours. Second, the
computational tools that are being developed in WP4 for anomaly detection and miti-
gation need to be based on sound principles; mathematical models allow us to evaluate
and validate such algorithms based on clear underlying model assumptions, even though
the use of these models in various practical situations will include conditions when some
of the model assumptions are not satisfied. Thus mathematical models will need to be
tested and validated through simulation and practical measurements. Third, due to the
large size of the systems we need to deal with, the mathematical models will have to
be decomposable, both in terms of obtaining analytical and numerical solutions, e.g. in
terms of product forms [36–38, 40], and in terms of distributed processing for reasons
of scalability [3]. Again, the mathematical and decomposable structure also provides a
handle for decomposing and distributing the computational tasks.

The focus of model construction is on identifying and modelling the individual steps
that a mobile user makes regarding:

• Call establishment, including the connection to base stations, access points, and
call management,

• Monitoring and billing, and the interactions between the mobile operator’s re-
sources and the network for monitoring and billing,

• Accesses that the call may make to sensitive resources such as web sites for privi-
leged information interrogation,

• Call processing or service steps that may require that the mobile user identity itself
is sent to the network or external resources, or provide other sensitive information
(e.g. personal addresses) at certain operational steps,

• The access to web sites that are used for purchasing and billing.

Indeed, in order to develop detection capabilities of a practical value it is vital to formu-
late a unified analytical framework which explicitly describes the main internal resources
of the network architecture, including both the internal aspects regarding base station,
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access points and call management and billing, and the sensitive external resources that
the mobile user may access during its call. Since our approach will have to be effective in
situations where hundreds of thousands of mobile users may be active in a given network
simultaneously, we need to address both:

• The case where only a small percentage of mobile users come under attack at a
given time, but these attacks are nevertheless of high value to the attacker so that
we must be able to detect relatively rare events in a very large ensemble

• Situations where attacks affect the signalling system and are significantly disturb-
ing a large fraction of the ongoing mobile connections

In all cases one may need to deal with real-time detection, mitigation and possibly attack
elimination, as well as data collection for deferred ulterior analysis. Our approach will
be integrated into the learning-based detection algorithms developed in WP4, and will
also be linked to the visualisation tools.

5.2. The G-Network Model

Consider a mobile network providing a set of services I such as calls, data, sms, etc. to
the users. When a user initiates an access to a service i ∈ I, a session starts. Generally,
the session is comprised of different phases including initiation, service provisioning and
termination. We denote by J the set of session phases. Moreover, during a session the
user utilises network resources such as channels, controllers, timers, etc., and we denote
this set of resources by N . Therefore at any time t, an active session is characterised by
a triple (i, j, n) ∈ (I, J,N), which we will refer to as the state of the session. The state
of the network at time t is given by x(t) = (x1(t), ..., xN (t)), where xn(t) is the state of
node n describing the sessions currently being handled at the node.

We model the system as a queueing network in which the servers (and buffers) repre-
sent the resources of the cellular network. An example of a network comprising 10,000
user equipments (UEs), 7 base stations and a radio network controller (RNC) is pre-
sented in Figure 5.1. The model includes both user and control plane traffic, allowing
us to capture in great detail the dynamics of the mobile network. It is assumed that all
the resources have exponential service time distributions, and we denote by r(i, j, n) the
service rate of session of type i and phase j at node n. Sessions of type i and phase j
arrive at node n with rate Λi,j,n following an independent Poisson process. Additionally,
we represent control-plane traffic generated by different network components by L types
of signals which are responsible for establishment, termination as well as various state
transitions during a session’s lifetime. The control signals of type l arriving at node n
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Figure 5.1.: Queueing model of a network containing 10,000 mobile users, 7 base stations
and an RNC.

form a Poisson process with rate λl,n. When the service of a session of type i and phase
j is completed at node n, it transits to node m and its phase changes to k with proba-
bility P+[i, j, n][i, k,m], or it becomes a control signal of class l and transits to node m
with probability P−[i, j, n][l,m]. It may also depart from the network with probability
d[i, j, n]. The network state change may also be triggered by control signals generated by
other network elements. If upon arrival, a control signal finds an empty queue it simply
disappears; otherwise it triggers a state transition. A control signal of class l triggers a
transition of the session of type i and phase j at node n with probability Kn,l,i,j . Qn,m,k,l
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denotes the probability of a customer of class k after being removed by a control signal
from node n to move to node m as customer of class l. Obviously the probabilities must
sum up to 1, that is:

N∑
j=1

R∑
l=1

P+
i,j,k,l +

N∑
j=1

S∑
m=1

P−i,j,k,m + di,k = 1, (5.1)

The theory of G-Networks [39] can then be applied to analyse the system described
above. In G-Networks, the users’ sessions running in the system in their corresponding
phases are represented by multi-class customers, where the set of the classes is given by
the cartesian product I×J , with R = |I×J | being the number of customer classes. For
First In First Out (FIFO) service mode, if the following conditions hold:

r(i, j, n) = r(a, b, n), ∀i, j, a, b
Kn,l,i,j = Kn,w,a,b, ∀i, j, a, b, l, w

then the probability distribution possesses the product-form property and is given by:

P (x) = G
N∏
i=1

R∏
k=1

q
xi,k
i,k (5.2)

where G is a normalisation factor such that ΣxP (x) = 1 and the quantities qi,k > 0, i ∈
[1, ..., N ], k ∈ [1, ..., R] are the solution for the system of non-linear equations given in
(5.3)-(5.5):

qi,k =
Λi,k + Λ+

i,k

ri,k +
∑S

i=1Ki,m,k(λi,m + λ−i,m)
(5.3)

with:

Λ+
i,k =

N∑
j=1

R∑
l=1

P+
j,i,l,krj,lqj,l +

N∑
j=1

R∑
l=1

N∑
h=1

S∑
m=1

R∑
s=1

rj,lqj,lP
−
j,h,l,mKh,m,sqh,sQh,i,s,k

+
N∑
j=1

S∑
m=1

R∑
s=1

λj,mKj,m,sqj,sQj,i,s,k (5.4)

λ−i,m =
N∑
j=1

R∑
l=1

P−j,i,l,krj,lqj,l (5.5)
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The dynamics of the system are then characterised by the steady-state probability dis-
tribution given in (5.2). In general, comparison of the first moments of the performance
measure of interest may not reveal the full picture of what is going on in the network,
especially when some local distortions or anomalies occur in network operations. There-
fore, we are interested in a metric that naturally combines all the available information
contained in the probability distribution.

5.3. Information Divergence in G-Networks

The developed model can be used to evaluate how the observed network’s behaviour di-
verges from a reference (typical or normal) behaviour. This divergence, when quantified
properly, will posses the desirable properties of an anomaly measure, namely:

• Aggregating various communication and system aspects into one number.

• Scalable with the network size.

• Applicable to arbitrarily selected network components.

As described in Chapter 2, a common metric for the distance between two probability
distributions u and v, representing respectively the reference and observed behaviours,
is information or KL divergence dKL(u, v) given in Eq. (2.8). When the probability
distributions u and v follow the form in (5.2) we get:

u(x) = u(x1, ..., xN ) =

N∏
j=1

(1− qu,j)q
xj
u,j (5.6)

and

v(x) = v(x1, ..., xN ) =

N∏
j=1

(1− qv,j)q
xj
v,j (5.7)

Now substituting (5.6) and (5.7) into the expression for dKL (2.8) we get a closed-form
expression for the information divergence in G-Networks:

dKL(u, v) =
N∑
j=1

[
ln

(
1− qu,j
1− qv,j

)
+

qu,k
1− qu,k

ln

(
qu,j
qv,j

)]
(5.8)

The derivations leading to the result above are presented in Appendix A. Note that
dKL(u, v) depends only on the loads qu,j at the various network resources, which are
much easier to measure than the patterns of control signals and sessions of individual
users.
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Figure 5.2.: Illustration of the G-network model for a subnetwork consisting of 2 base
stations and 1 RNC.

5.3.1. Signalling Attack Example

We demonstrate the above modelling framework and the usage of the dKL divergence for
correlation of mobile users behaviour and the resulting impact on the network through
the following example. Suppose that the wireless network presented in Figure 5.1 is
partially observed, so that the monitored part consists of two base stations and 1 RNC
as shown in Figure 5.2. The traffic consists of two types of services, voice calls and
web browsing, and there are two types of signalling traffic controlling the corresponding
two services. This subnetwork forms a G-Network consisting of N = 3 nodes, R = 2
customer classes, and S = 2 classes of control signals. Let the model parameters have
the following values:

Λ[N×R] =

 1 0.1
0.1 1
0 0

 , λ[N×R] =

 1 0.1
0.1 1
0 0

 , r[N×R] =

2 2
2 2
2 2

 , K = [0.5]N×S×R

P+ = [0]N×N×R×R
P+[i, i, j, j] = 0.1 i, j = {1, 2}
P+[i, 3, j, j] = 0.4 i, j = {1, 2}

P− = [0]N×N×R×R
P−[1, 3, i, j] = 0.1 i, j = {1, 2}
P−[1, 1, i, j] = 0.1 i, j = {1, 2}

Q = [0]N×N×R×R
Q[2, 3, 2, 2] = Q[3, 2, 2, 2] = 0.5
Q[1, 3, 1, 1] = Q[3, 1, 1, 1] = 0.5

The numerical solution of the non-linear equations (5.3)-(5.5) for the values of q and
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E[x] yields:

q[N×R] =

 0.5091 0.0497
0.05261 0.5389
0.2275 0.2251

 , E[x][N×R] =

 1.0369 0.0523
0.0556 1.1685
0.2946 0.2904


Let λattack be the vector of signaling attack rates, 0≤α≤1 be the attack intensity, so

that the effective arrival rate of control signals from both normal and malicious behaviour
is λeff = (1− α)λ+ αλattack. We will examine the sensitivity of the dKL divergence on
the attack intensity α for three different attack rate vectors:

λattack1 =

 0.2 0.1
0.1 0.1
0.1 0.1

 , λattack2 =

 0.1 0.1
0.1 0.2
0.1 0.1

 , λattack3 =

 0.1 0.1
0.1 0.1
0.2 0.1


The results are presented in Figure 5.3, where each plot shows the divergence dKL

caused by the respective attack rate vector, at each node as well as the entire network.
Due to the symmetry of the traffic patterns, which results from the specific rates of
incoming traffic and the routing probabilities in the example, the first and the second
attack rate vectors, λattack1 and λattack2 , affect the network and each node approximately
in the same manner. However, when the attack rates are represented by λattack3 , where
number 3 is the most affected, we see that the divergence is significant both at this
specific node as well as the entire network, whereas it is less pronounced in nodes 1 and 2.
This observation suggests that our method could be useful for capturing the correlation
between the behaviour of users and the impact on the system not only at the network
level, but also at the nodes level, where divergence at a node increases in proportion to
how the node is impacted by the attack. This could help in the identification of the root
causes of anomalies.
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Figure 5.3.: KL divergence in G-networks vs attack intensity α for the attack rate vectors
λattack1 (top), λattack2 (middle) and λattack3 (bottom).
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6. Conclusions

This deliverable presented a number of frameworks for representing and analysing mobile
network traffic, focusing on signaling and billing data available to the operators. Sev-
eral techniques have been applied to datasets obtained from operational 3G/4G mobile
networks, in order to reduce the number of monitored traffic variables, allow efficient
processing of the data, and enhance the performance of the anomaly detection algo-
rithms.

First, we analysed features extracted from time series signaling data related to the
HLR and MSC components, in order to understand their reference behaviour and iden-
tify the information they provide about the network. The features were extracted using
time series decomposition, entropy analysis and dimensionality reduction. We also ex-
amined the correlations between the extracted features, and identified some underlying
patterns in the signaling traffic under both normal conditions and in the presence of
anomalous traffic instances. The efficiency of the approach in identifying relevant fea-
tures for anomaly detection was demonstrated for both datasets.

Then, we presented a graph correlation approach that can be used as a pre-processing
step for anomaly detection. In this method, billing or CDR records were transformed
into sequences of graph representations, where each graph in a sequence represents either
a single CDR activity in a specific time instance, or a CDR activity of one user for
the total time period, allowing the detection of anomalous time instances and users,
respectively. Graph matching techniques were subsequently applied to measure the
differences between graphs which in turn were visualised on the 2D space using MDS in
order to facilitate the detection of outliers. The approach was applied on the VAST2008
challenge regarding CDR analysis, and was found to be very efficient in identifying
distinctly different users and time instances.

Finally, we developed a model-based approach using multi-class queueing models,
which allows to conduct quick what-if analysis to determine whether an observed be-
haviour is normal or malicious in order to perform signaling-based anomaly detection.
Specifically, the model enables anomaly detection algorithms to obtain quick estimates
of the impact of a suspected set of users, so that abnormal but non performance im-
pacting behaviours are not incorrectly flagged as malicious. It also allows to predict the
future effect of a suspected set of users on the network (e.g. during rush hour), so that
appropriate mitigation steps could be taken in advance.
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The final abnormal event detection module, which integrates the methods and features
identified in this study and the detection algorithms developed in WP4, will be presented
in the second version of this deliverable.
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A. Derivation of KL Divergence in G-networks

The derivation of (5.8) consists in substituting the probability distribution of the refer-
ence behaviour (5.6) and the observed one (5.7) into the definition of KL divergence in
(2.8):

dKL(u, v) =
∑
x

u(x) ln
u(x)

v(x)

=
∑

x1,...,xN

u(x1, ..., xN ) ln
u(x1, ..., xN )

v(x1, ..., xN )

=
∑

x1,...,xN

u(x1, ..., xN ) ln

∏N
j=1(1− qu,j)q

xj
u,j∏N

j=1(1− qv,j)q
xj
v,j

=
∑

x1,...,xN

u(x1, ..., xN ) ln

 N∏
j=1

(
1− qu,j
1− qv,j

) N∏
j=1

(
qu,j
qv,j

)xj
=

∑
x1,...,xN

u(x1, ..., xN )

ln
N∏
j=1

(
1− qu,j
1− qv,j

)
+ ln

N∏
j=1

(
qu,j
qv,j

)xj
=

ln

N∏
j=1

1− qu,j
1− qv,j

 ∑
x1,...,xN

u(x1, ..., xN )︸ ︷︷ ︸
=1

+
∑

(x1,...,xN )

u(x1, ..., xN ) ln

 N∏
j=1

(
qu,j
qv,j

)xj
=

N∑
j=1

ln

(
1− qu,j
1− qv,j

)
+

∑
x1,...,xN

u(x1, ..., xN ) ln
N∏
j=1

(
qu,j
qv,j

)xj

=
N∑
j=1

ln

(
1− qu,j
1− qv,j

)
+

∑
x1,...,xN

u(x1, ..., xN )

N∑
j=1

xj ln

(
qu,j
qv,j

)
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=
N∑
j=1

ln

(
1− qu,j
1− qv,j

)
+

N∑
j=1

ln

(
qu,j
qv,j

) ∑
x1,...,xN

u(x1, ..., xN )xj︸ ︷︷ ︸
=Eu[xj ]

=
N∑
j=1

[
ln

(
1− qu,j
1− qv,j

)
+ Eu[xj ] ln

(
qu,j
qv,j

)]
(A.1)

In the following, we obtain the expression for Eu[xk] based on (5.6):

Eu[xk] =
∑

x1,...,xk,...,xN

xk u(x1, ..., xk, ..., xN )

=
∑

x1,...,xk,...,xN

xk

N∏
j=1

(1− qu,j)q
xj
u,j

=

N∏
j 6=k

 ∞∑
xj=0

(1− qu,j)q
xj
u,j

 ∞∑
xk=0

xk(1− qu,k)qxku,k

=

N∏
j 6=k

(1− qu,j)
∞∑
xj=0

q
xj
u,j

 (1− qu,k)
∞∑

xk=0

xkq
xk
u,k

=

N∏
j 6=k

(1− qu,j)
(1− qu,j)︸ ︷︷ ︸

=1

[
(1− qu,k)

qu,k
(1− qu,k)2

]

=
qu,k

1− qu,k
(A.2)

Substituting (A.2) into (A.1) results in (5.8).
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