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Abstract

Femtocells are small, low-power cellular base stations which are typically designed for
use in a home or small business environment. Although the deployment of femtocells has
advantages for both the mobile network operator and the end-user, such as improved
network coverage and capacity indoors, femtocells create new security vulnerabilities
and potential attack vectors that need to be identified and addressed. In this document,
we first investigate the vulnerabilities of, and attacks specific to femtocells, and then
propose a femtocell-based honeypot architecture called the cellpot in order to monitor
the femtocells deployed within a mobile network, and later to mitigate against attacks
originating from femtocells. Our proposed cellpot concept protects the core network from
compromised femtocells by separating the firmware and the infrastructure environments
within the device by virtualization technology. Every cellpot-enabled femtocell device
joins a peer-to-peer network which enables the distributed sharing of information among
the cellpots, allowing them to inform each other of any detected suspicious activity and
paving the way for smart mitigation against attacks originating from femtocells.
We also investigate and evaluate several anomaly detection methods which can be

used to identify anomalies and malicious activities within femtocells, using realistic data
traces from simulated mobile networks with compromised femtocells. The methods that
we investigate are based on the cumulative sum (CUSUM), local outlier factor (LOF),
hidden Markov models (HMM), and Bayesian robust principal component analysis (BR-
PCA). Our evaluation shows that while all of the considered methods are able to detect
the investigated anomalies within femtocells, CUSUM is the least stable and accurate,
while HMM and BRPCA are the most stable and have consistently good performance.
Since BRPCA does not require supervised training and is computationally more than
two times faster than HMM, we believe that BRPCA is the best anomaly detection
method for the identification of anomalies in femtocells in large mobile networks.



1 Introduction

Femtocells are small, low-power cellular base stations which are typically designed for
use in a home or small business environment. Mobile networks operators (MNOs) de-
ploy femtocells in order to improve network coverage and capacity, especially indoors.
However, the use of femtocells create new security vulnerabilities and potential attack
vectors. For example, due to easy physical access to the device, attackers are better able
to compromise femtocells and weaponize them to attack cellular networks. Therefore,
MNOs need to understand the additional vulnerabilities due to femtocell architectures,
detect attacks originating from femtocells, and mitigate against such attacks in order to
protect their infrastructure and services.
In this document, we first review the vulnerabilities of femtocells, and propose a

femtocell-based honeypot framework, called the cellpot, in order to address attacks orig-
inating from femtocells. Honeypots have proved to be valuable in the detection and
analysis of network attacks in the Internet, and we have proposed a smartphone-based
honeypot in order to extend the concept to mobile networks in the NEMESYS project.
In order to improve the coverage of our smartphone-based mobile honeypot, and to mon-
itor and protect femtocells deployed in a mobile network, we propose the deployment of a
femtocell-based honeypot framework called the cellpot, which allows the threat identifi-
cation, anomaly detection and defense mechanisms to operate within the mobile network
under the control of the operator. Cellpots are a cost-effective and scalable method to
detect anomalies and attacks originating from femtocells, and are ideally situated to
enable the operator to mitigate against such attacks once they have been identified, for
example by reducing the signaling overhead and thereby protecting the core network,
which in effect allows the operator to continue to provide uninterrupted and high quality
mobile services to its customers. We discuss how cellpots can be utilized to protect the
mobile network against common threats and attacks, such SMS spam, mobile theft, and
mobile malware.
We also investigate several anomaly detection methods in order to identify anomalies

in femtocells; the methods we consider are based on the cumulative sum (CUSUM), local
outlier factor (LOF), hidden Markov models (HMM), and Bayesian robust principal com-
ponent analysis (BRPCA). We evaluate these methods using realistic data traces from
simulated mobile networks with compromised femtocells. In our evaluation, we consider
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currently the most common mobile malware, premium SMS messages, where an attacker
has compromised one or more femtocells that generate premium SMS messages on behalf
of the mobile devices connected to the malicious femtocell. Our evaluation shows that
while all of the considered methods are able to detect the investigated anomalies within
femtocells, CUSUM is the least stable and accurate although it is also the most compu-
tationally efficient. We observe that HMM and BRPCA are the best methods in terms of
stability and detection rate. However, we believe that BRPCA outperforms HMM since
it does not require supervised training and it is computationally more than two times
faster than HMM. We therefore recommend BRPCA as the anomaly detection method
of choice for the identification of anomalies in femtocells in large mobile networks.
The rest of this document is structured as follows. Chapter 2 presents background

material in the area of security of femtocells. In Chp. 3, we present a review of sev-
eral femtocell-specific attacks which affect the mobile customers and the core network,
and also describe the threat model that we assume. Our cellpot concept is discussed
in Chp. 4. Chapter 5 presents the anomaly detection algorithms we have considered
and their evaluation in detecting attacks originating from femtocells. We conclude by
providing a summary of our main findings in Chp. 6.
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2 Background

2.1 Femtocell architectures

A femtocell is a small cellular base station, typically designed for use in a home or small
business environment. The femtocell base station connects to the service provider’s
network via broadband, e.g. DSL or cable, which is shared publicly. Current designs
support 2–4 or 8–16 active mobile phones if used in a residential or enterprise setting,
respectively. Femtocells allow service providers to extend service coverage indoors, es-
pecially in cases where access would otherwise be limited or unavailable. Although most
of existing femtocell deployments are in 3G systems, the concept is applicable to all
standards, including GSM, CDMA2000, TD-SCDMA, WiMAX, and LTE. Femtocells
practically offer local mobile cell sites to customers, enhancing the capabilities of the
mobile network exactly at the points where the service demand is highest, such as inside
homes or business premises, and support the same radio standards as macrocell base
stations, thus enabling seamless handovers between femtocells and macrocells.
A typical femtocell solution is presented in Fig. 2.1, which is composed of:

• the femtocell access point (FAP), which provides the radio interface,

• the femtocell gateway (FGW), which manages the access point and authenticates
communications, acting as the security gateway,

• an authentication, authorization, and accounting (AAA) server,

• a DNS/DHCP/NTP server,

• a set switches and routers that interconnect the femtocell nodes and the femtocell
platform to the rest of the operator’s core network, and

• a network management system (NMS).

Femtocells operate in a licensed spectrum and they are designed to route mobile phone
traffic through a home or corporate IP network. A femtocell provides voice and data
services to connected mobile devices. The range covered is very limited, normally within

12



Figure 2.1: A typical femtocell solution. The femtocell access point (FAP) provides the
radio interface to the user equipment (UE). The FAP is normally connected
via public broadband to a security gateway (SEGW), which authenticates
the communications to/from the femtocell. The femtocell gateway (FGW)
manages the FAP and may also incorporate the SEGW functionality into
a single device. The authentication, authorization, and accounting (AAA)
server provides AAA services to the femtocell architecture with the help
of the HLR. The femtocell architecture can be connected to the operator’s
service network via alternative points as shown in the figure.
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a house or a small business. The units are designed to be plug-and-play for easy installa-
tion. The main features of femtocells include automatic detection of the ISP, automatic
registration, authentication to the mobile network, self-upgrades, location check, and
transmit power adjustment. Femtocells should not be confused with repeaters, also
known as signal boosters, which are used to improve existing macrocell coverage but do
not provide any base station functionalities.

Advantages of femtocells

For a mobile operator, the benefits that femtocells offer are improvements to both cov-
erage and capacity, especially indoors. This can reduce both capital expenditures and
operating expense. Subscriber satisfaction is greatly improved, since customers benefit
from improved coverage and potentially better voice quality and increased battery life.
Subscribers may also be offered more attractive tariffs, e.g. discounted calls from home.
Femtocells are sold by an operator to its residential or enterprise customers. A fem-

tocell is typically the size of a residential gateway or smaller, and connects to the user’s
broadband line. Integrated femtocells (which include both a DSL router and femtocell)
also exist. Once plugged in, the femtocell connects to the MNOs mobile network, and
provides indoor coverage in a range of typically 30 to 50 meters (line of sight) for resi-
dential premises. The output power of a femtocell is usually 20 mW, which is five times
less than a Wifi access point. From a user’s perspective, there is no specific installation
or technical knowledge required.
Once installed in a specific location, most femtocells have protection mechanisms

so that a location change will be reported to the MNO. Whether the MNO allows
femtocells to operate in a different location depends on the MNOs policy. International
location change of a femtocell is not permitted because the femtocell transmits licensed
frequencies which belong to different network operators in different countries.
For MNOs, femtocells may constitute a solution to:

• Increase mobile usage indoors, and thus revenues, by combining coverage/capacity
enhancements with inexpensive voice services,

• Offer new, innovative data services (music/photo/video download synchronization,
mobile TV, etc.), thus making the mobile phone competitive to a fixed phone, PC
and/or TV, and

• Offer fixed mobile convergence (FMC) in response to WiFi, VoIP, Homezone and
unlicensed mobile access (UMA) offerings.

In addition, femtocells may contribute to:

14



• Churn reduction (e.g. by “capturing” all the members of a family),

• OPEX savings on (macro) backhaul network (due to traffic offload),

• CAPEX savings since no new macrocell base stations or capacity expansions are
needed.

However, prior to the commercial introduction of femtocells, an operator has to address
a considerable list of issues, including possible interference with macrocells, impact on the
core network, security concerns, interoperability, regulatory/EMC concerns, use of SLAs
for QoS guarantees (especially for voice) over the broadband connection, availability of
platforms/features, and packages to be offered to the customers.
The main benefits for an end-user are the following:

• Improved indoor coverage when there is no existing signal or poor coverage,

• Higher mobile data capacity,

• Special tariffs within the femtocell area,

• “One phone, one number, one bill” and converged services both indoors and out-
doors.

2.2 Security architecture of femtocells

The home Node-B (HNB) is installed in the users’ premises and its traffic is tunneled via
public Internet (wired broadband) connection. Hence for the MNO, it is important to
ensure that the HNB protects the communication over the insecure public Internet, and
over the air-link between itself and the mobile device. Figure 2.2 shows the HNB security
architecture, which is described in [1]. The main components of the femtocell security
architecture are the HNB device, security gateway (SeGW), user equipment (UE), and
the OAM (Operation, Administration, and Management) server. These components are
described below.

Home Node-B The main function of the HNB is to act as a small base station. The
HNB connects the UE via its radio interface to the mobile service operator’s core network.
It transmits the UE data by establishing a secure IPsec [16] ESP tunnel with the SeGW
over an insecure backhaul link (broadband Internet connection). Moreover, it supports
a set of functions provided by the radio network controller (RNC) in 3G networks,
mutual authentication between the UE and the SeGW, and provides standard encryption

15



Figure 2.2: The security architecture of femtocells

mechanisms over the insecure radio link. It communicates to the OAM directly using a
secure link or through the SeGW.

Security gateway The SeGW acts as a border gateway of the operator’s core network.
First, it mutually authenticates and registers the HNB to establish a secure IPsec tunnel,
and then forwards all the signaling and the user data to the operator’s core network.
Mutual authentication can be performed using certificates. The interface between the
SeGW and the operator’s core network is considered to be secured. The SeGW accepts
traffic only from the HNB and discards unwanted malicious traffic at the border.

HNB management system The HNB management system is a management server
that is responsible for the configuration and the provisioning of the user data according
to the operator’s policy. It can be functioned to provide the required software updates on
the HNB and can be located inside the operator’s core network. However it is considered
to be in an insecure domain if located outside of the operator’s core network.

AAA server and HSS The subscription data and authentication information is stored
in the HSS. The AAA server authenticates the hosting party (the HNB) by accessing
the authentication information from the HSS. Both the AAA server and the HSS are
deployed in the operator’s core network.

16



HNB gateway The HNB gateway performs the access control for the non-CSG (Closed
Subscriber Group) capable UE attempting to access a HNB. The SeGW can be integrated
with a HNB-GW, and if not integrated then, the interface between SeGW and HNB-GW
may be protected using NDS/IP (Network Domain Security/IP network layer security).

UE The UE is a standard user equipment that supports the 3G (UMTS) communica-
tion. It connects to the HNB over-the-air using a 3G AKA (Authentication and Key
Agreement) procedure.

In the following sections of this document, we will be referring to the femtocell as the
FAP, HNB or small cell interchangeably.

2.3 Security requirements in femtocell architectures

When an important component of wireless system is located at a customer premise, such
as the Femto Access Point (FAP), the convenience of the equipment location is tempting
enough to attract attackers and hackers both occasional and professional. Due to the
fact that a number of femtocell systems had been developed and deployed as a result
of speedy need to reach market quickly, these systems were based on some of the older
security assumptions and technologies and therefore experienced the most scrutiny from
the hacker community. These attacks and other common threats make it imperative
that such a Femto system is designed with stringent security requirements from the very
beginning.
Security for femtocell networks spans several distinct requirements. The service provider

must authenticate users as they arrive on the network. The RF link between the handset
and the femtocell must be secured for both user and control plane traffic. The mobile
network traffic must be placed into a virtual private network as it traverses the wired
ISP network to ensure that the traffic is protected while transiting this public network
and only authorized users can forward traffic to the mobile operator’s network. The
first two elements of the security equation are specified by the existing mobile network
standard (i.e. GSM, UMTS, etc.) as the handset will interact with the femtocell as if
it were a macrocell. The use model for the VPN established between the femtocell and
the carrier network has been defined by ETSI and is based upon the well known IPsec
standard. Lastly, there is also the requirement to support voice-over-IP or SIP security
which is governed by the IETF standard known as SRTP (Secure Real-time Transport
Protocol). Therefore, the solution set required for a femtocell is a complex amalgam of
well known security standards knitted into a comprehensive solution.
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Femtocell solutions necessitate the establishment of IPsec tunnels between FAP-FGW,
over which traffic/signalling/OAM traffic is encrypted, while the IKEv2 and IPsec EAP
protocols offer confidentiality. All vendors support normal core network authentication
procedures between the UEs and the MSC/HLR. Air-interface ciphering and integrity
protection is not supported by all FAP manufacturers, but the imperative to utilise
ordinary handsets and UE SIMs for accessing the FAPs forces them to use ordinary
UMTS (Kasumi-based) encryption and integrity protection algorithms UEA1 and UIA1,
respectively.
Access to FAPs can be restricted utilizing the closed-mode, where selected users/MSIS-

DNs per FAP can be serviced and/or group-mode where only selected users/MSISDNs
may access a certain FAP-group. Closed/Group modes are not supported by all vendors.
Mutual authentication/certification between FAPs-FGW can be based on: dedicated
FAP SIM/USIM (EAP-SIM/EAP-AKA) , hard-coded authentication chips built-in the
FAP, digital certificates stored in FAPs SIM, software coded authentication certificates
pre-stored in FAPs Operating System or MAC addresses. Depending on FAPs capability
(embedded SIM, built-in chip, etc.) the operator may be forced to support more than
one authentication/certification options.
There is however one very important element of femtocell security which makes the

implementation significantly more complex. This relates to the additional latency intro-
duced in mobile communications by the security architecture, which must be carefully
managed especially for real-time and interactive applications such as VoIP and gam-
ing. Compounding this challenge is the unknown nature of the latency across the ISP
network, which has resulted in service providers requiring latency in the femtocell to
be minimized. As a result of this stringent requirement, SoC designers are adopting
sophisticated traffic management features in the femtocell SoC and software to meet the
latency requirements.

2.4 Honeypots

Honeypots are a well established tool for collecting intelligence about threats in IP
networks. For small cells, a new form of honeypot is needed. To that end we introduce
Cellpot, a novel honeypot concept to detect, collect intelligence and mitigate threats
against the cellular network directly on the base station. Our concept largely avoids the
costs involved with certification and validation with respect to the radio network. Recent
work of Golde et al. [11] shows that the current femtocell hardware can be turned into
a monitoring node within the cellular network. In this document, we present a practical
software design that ensures security of the core network and the honeypot.
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2.5 Threat model

For the purposes of the current work, we assume an attacker who has physical access to a
femtocell base station. The base station uses a landline broadband connection to connect
with the mobile operator’s core network. This communication channel is encrypted (e.g.
using IPSec) and we assume the attacker is not able to wiretap, intercept or modify
the communication. The attackers possess one or more mobile devices which enables
them to connect to the base station and create signaling traffic such as changing call
forwarding settings or sending SMS.
Attacks on the cellular infrastructure can be categorised by three properties: (i) at-

tacks on quality-of-service (QoS), for example by using excessive signaling to affect the
performance of the network, (ii) attacks on availability, for example by jamming the
radio frequencies, and (iii) attacks on the security and privacy of users. For the cellpot
concept, we do not cover attacks on the base station firmware itself, including software-
based and hardware-based attacks (e.g. JTAG). However, we note that the security of
the firmware is of paramount importance, and current firmware does not offer sufficient
protection.
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3 Review and Analysis of Attacks in

Femtocells

In this chapter we survey various attacks in the femtocell network systems and analyze
security issues in femtocell security architecture.

3.1 Analysis of security issues in femtocells

Recent studies demonstrated that femtocells can be easily rooted and turned into rogue
base station. In the following section, we discuss why such devices are insecure and
outline architecture design issues.

3.1.1 Vulnerabilities of femtocell devices

A well-known problem with femtocells is their system design, which is tailored for min-
imal costs instead of security. Previous work showed how femtocells can be rooted and
how that poses huge risks for both the operators and their customers [11].
Even more concerning is that a single malicious femtocell could poison the whole net-

work, which could then no longer be trusted. We believe that future femtocell hardware
will suffer from the same security weaknesses because they will also be tailored for small
cost. An analysis of femtocell vulnerabilities shows that they are caused by a combi-
nation of three factors: First, the femtocell firmware is built using outdated versions of
open source software. Second, it employs a web-based configuration environment, which
requires a web server to run on the femtocell. Web servers have a bad security track
record and present a broad user-accessible attack vector. Third, the components running
on the femtocell are insufficiently isolated from one another. If an attacker succeeds in
executing custom code (e.g. through a vulnerability in the web server), she can easily
obtain root permissions by rooting the device.

3.1.2 Vulnerabilities of femtocell architectures

It is important to note that traditionally the security of telecommunication networks
are based on trust relationships and the fact that it is hard for adversaries to tamper
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operator equipment. This has been proven to be problematic in the past and oper-
ators face new challenges such as services offered by external gateway providers and
massive fraud problems. Again operators are doing the same by essentially introducing
a new infrastructure part and relying on a single point of failure which in this case is
the HNB. The proliferation of gaining administrative access remotely, open knowledge
of the 3GPP standards and related specifications, increasing modern attacking vectors
against embedded systems and a risk of giving physical access is making security of not
only femtocell devices but also overall infrastructure difficult to control and characterize.
Various researchers have evaluated and demonstrated noteworthy attacks from a rogue
femtocell and their impacts affecting end-users and mobile operator as well. The pre-
sented attacks are irrelevant of a specific operator or system vulnerabilities, instead, they
are caused by the vulnerabilities in femtocell security architecture and due to negligence
of fundamental 3G security principles. We believe that attacks specifically targeting end
users are troublesome for the mobile operators and difficult to mitigate due to nature of
the femtocell.

3.2 Attacks against end-users

In this section, we describe attacks against the end-users connected to the compromised
femtocell.

3.2.1 Interception attacks

The femtocell acts as a base station serving mobile services to the end-users. If such
devices are compromised by exploiting security weaknesses, they can be turn into a
rogue base station. These rouge base stations are commonly termed as IMSI-catcher
devices. Their main goal is to collect IMSI numbers of mobile devices attached to the
base station and to intercept a mobile subscriber’s communication (connected to the
base station). Authors in [11, 30] demonstrated that if a femtocell is rooted then it
can be convert into IMSI-catcher device. In particular, they demonstrated that such
compromised devices affects confidentiality of the subscriber data which is one of the
important security aspect from operator’s view. Their results also claimed that rooted
femtocell acts a proxy between the target’s phone and the operator. Due to this, such
illegal proxy may be difficult to detect. Further, such proxy would give access to target’s
voice and data communicated over radio interface.
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3.2.2 Denial of service attacks

Availability is another important security aspects of mobile communication networks.
Rouge femtocells affects this availability aspect via Denial of Service (DoS) attacks.
Recent research work demonstrated the possibility of such attacks [11]. They exploited
the fact that the IMSI DETACH MM message is not authenticated in GSM and 3G
networks [22] to launch DoS attacks against the mobile devices connected to rogue
femtocell. The attacker can inject these IMSI DETACH MM messages via the rooted
femtocell to the network and inform the operators that respective users are not available
to be paged for incoming mobile services. Once acknowledged by the network, users
connected via the rooted femtocell would not receive any mobile terminated services
such as voice calls or SMS messages. The important point in this attack is that the
non-availability of mobile terminated services is not notified to the users. Their results
[11] show that it is possible to perform a large scale DoS attack from rogue femtocells
against all subscribers connected via femtocell networks.

3.3 Attacks against the mobile network

In this section, we survey attacks on the Femtocell-enabled cellular network from a
compromised femtocell. We describe attacks that do not target mobile phone users
directly, but the availability of the network.

3.3.1 Signaling attacks

As discussed earlier, rooted femtocell acts a proxy between the target’s phone and the
operator. This implies that proxy can be used to inject signaling messages in the core
network. As we know that signaling attacks are one of the key threat to the availability
of mobile communication networks [9, 27, 31]. If the femtocell is compromised then they
can be used to perform signaling attacks on the operator’s network. Authors in [11] were
able to demonstrate feasibility of such attacks. During their work, they injected malicious
traffic to the HNB-GW using attack client and the proxy setup. More importantly to
send such malicious traffic, the mobile devices does not need to be connected to the
compromised femtocell. Authors claimed that such attack can be automated using their
setup to generate signaling flood messages.

3.3.2 Femtocell botnets

If the DoS attacks are carried out from number of compromised femtocells, its impact
would be more on the core network components. Authors in [11] investigated this possi-
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bility. To make DoS attacks from more femtocells, the attacker needs to remotely control
them. Eventually he or she needs to exploit some weaknesses in femtocell devices in or-
der to gain remote root access. The authors were able to discover a remote root access
vulnerability to build a botnet of compromised femtocells. They argued about feasibility
of making such botnet, provided that it fulfills following conditions:

• During their research, communication between two femtocells were not filtered. In
fact, the 3GPP standard mentions that communication between two femtocells is
explicitly allowed [3].

• All deployed femtocell devices are same, implies that a vulnerability affecting one
devices can be applied on others.

• It would be difficult for the femtocell users to notice that their femtocell device is
part of a botnet.

• These devices are always connected to the operator’s network via broadband In-
ternet connection.

Due to above conditions, their research demonstrated feasibility of making an army
of compromised femtocell devices to perform distributed signaling attacks against the
operator’s core network. It also claim that it could be possible to evade known detection
mechanisms by performing attacks at a low-rate in low-volume as described in [18].
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4 Cellpot: A Honeypot Framework for

Femtocell Architectures

The cellpot is a novel concept for honeypots inside the core mobile network. Cellpot’s
purpose is threefold. First, it is a key tool for the network operator to gather intelligence
on mobile threats. Second, it acts as a means to protect the core network, and finally,
it protects the mobile user. Femtocells are attractive points for honeypot deployment
since their stronger signal makes the attacker’s mobile device connect to the femtocell
instead of the macrocell base station. The cellpot concept consists of three components:

• CellpotA cellpot comprises the original small cell hardware and a custom firmware.
Its primary duties are to monitor the signaling traffic and to do anomaly detection.
It can also be equipped with means to counter attacks, such as software to rate
limit signaling commands, or filters for expensive premium SMS/MMS. In our con-
cept as many cellpots as possible are deployed in order to gain a large coverage and
thus increase the chances to catch attacks. The custom firmware has to be certified
only once for each type of small cell hardware. Because there are much less types
of small cells than there are mobile devices, the costs involved with certification
are much smaller for small cell hardware than they are for mobile devices.

• Peer-to-peer network Cellpots are interconnected with each other in a peer-to-
peer (P2P) network. This network is used to share information between cellpots
and to distribute command and control information. The P2P network elects
master nodes based on the throughput of their landline Internet connection.

• Honeypot gateway server The HGS is the central unit of control of all deployed
cellpots. It is used by the MNO to centrally collect threat information from the
cellpots as well as to issue commands for countermeasures.

To gather intelligence, cellpots interpose between the customer and the core network
to detect anomalies in signaling traffic. Cellpots are interconnected with each other in
a P2P network. The P2P network has the following duties:
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Figure 4.1: Cellpot consists of three components: The cellpot, a peer to peer network
and the Honeypot Gateway Server

• Detect DDoS attacks: Signalling attacks as shown by Traynor et al. [32] are
executed using a large mobile botnet, whose bots do not necessarily share the
same location. Because these bots connect to the core network with different base
stations, an ongoing attack might seem to be legitimate to a single cellpot. To
detect such attacks, cellpots are interconnected with each other with a P2P network
and share their information on signaling traffic. If this distributed knowledge
indicates an attack, the master nodes will inform the MNO using the HGS.

• Command and control: Based on the information received from the cellpot
network, the MNO can instruct cellpots to execute countermeasures, e.g. to rate
limit or disable certain commands. These commands are sent directly to the master
nodes, which distribute them into the P2P network.

We opted to use a P2P network because it significantly increases the scalability of our
cellpot infrastructure. This architecture reduces load on the centralized HGS. With this
solution, the HGS needs to be connected to a small set of master nodes only. Figure 4.1
illustrates the cellpot architecture.
Cellpot uses sensors to record events that could be of interest to collect threat intel-

ligence. A sensor wiretaps the traffic from a communication device and records events
of interest. In the case of femtocells there are only two communication interfaces: the
radio link and the Ethernet interface. When a sensor detects a suspicious event it can
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start to increase the rate with which data is collected. This avoids recording lots of
uninteresting events while in the attack case missing important events. In the case of
cellpot sensors are also used for threat mitigation. In that case the sensor is acting as a
filter. For cellpot we envision filters for premium SMS, abnormal signaling traffic and a
stolen-devices list.

4.1 Applications of cellpot

In this section we discuss how cellpot can be used by the different stakeholders of the mo-
bile security community. The different stakeholders are mobile network operators, device
manufacturers, Computer Emergency Response Team (CERT) organizations, mobile an-
tivirus companies, and academic re- searchers. Honeypots can be categorised by their
goals into four types [23]. Honeypots can be used for detection of attacks through e.g.
anomaly detection. A prevention honeypot is able to dwarf attacks. Honeypots are used
for research to discover patterns and learn about new attacks. To mitigate attacks the
intelligence collected by a honeypot can be used to react in a precautionary manner. We
believe that cellpot can be categorised in the above four types by interested stakeholders
depending on their security requirements. Since the cellpot system is easy for MNOs to
integrate into their next generation networks, we discuss new applications. The main
advantage for operators to deploy the following applications on the cellpot is to minimize
signaling overhead by detecting and preventing various attacks on the small cell itself
before it can reach into their core network.

4.1.1 SMS spam prevention

SMS spam is any unwanted text message delivered to mobile users via SMS. This spam-
ming issue continues to grow and constitutes 20-30 of all SMS traffic in Asian markets
such as China and India due to the introduction of unlimited text plans [12]. As a
consequence of SMS spamming attacks, mobile operators are seeing financial loss due
to higher infrastructure and operational costs, poor customer experience, and regula-
tion threats. Typically MNOs deploy various additional solutions within their Signalling
System No. 7 (SS7) core network to prevent SMS spam attacks. However such type of
solutions introduce additional cost and signaling overhead into the core network. Our
cellpot architecture provides a new way for operators to prevent SMS spam. The preven-
tion techniques can be applied directly on small cells and the cellpot gateway. Potential
advantage of this method is that operators can detect and block spam messages before
they can be sent to the Short Message Service Centre (SMSC), minimizing malicious
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SMS related signaling traffic in the core network. The cellpot can be equipped with dif-
ferent filter techniques to block malicious premium rate SMS numbers, mobile malware
spreading via SMS messages, and phishing.

4.1.2 Mobile theft prevention

Mobile theft is a rising issue and law enforcement authorities are pushing mobile net-
work operators to tackle it effectively[29]. MNOs deploy Equipment Identity Register
(EIR) [13] in their networks and store the identity of stolen or lost phones, typically the
International Mobile Equipment Identity (IMEI) number of phones. Operators EIR are
automatically connected with other operators to share IMEI database. However deploy-
ing additional EIR system introduces additional cost and signaling. Also the system is
not effective since attackers usually change the IMEI of the device illegally. The cellpot
architecture provides a way to detect stolen mobile phones by uploading IMEI database
directly on to the cellpot gateway and small cells. Further mobile data collected in our
honeypot system could assist in finding new ways to detect stolen phones despite their
IMEI change. This approach does not add SS7 signaling overhead into the core network.

4.1.3 Malware and phishing prevention

The cellpot architecture provides a unique way to monitor mobile data which includes
the websites users are trying to connect to. A new anti-phishing framework can be
developed using the cellpot architecture similar to Li and Schmitz work in [19]. The
cellpot can detect known malicious websites serving malware using services such as
MalwareBlacklist.com and inform the operator.

4.2 Legal issues with the cellpot

Our cellpot architecture provides a platform for monitoring mobile traffic including calls,
SMS, and data. Depending on its application, the data collected by cellpot can contain
user’s private information such as International Mobile Subscriber Identity (IMSI) num-
ber, call history, and even the browsing history etc. A subset of that data is transferred
from small cells to the MNO.
The private nature of this data could raise privacy concerns in some countries. How-

ever, we want to stress that the cellpot architecture does not require the MNO to store
user’s call or SMS data. It is necessary to use certified anonymizing algorithms in the
cellpot. Considering that fact that MNOs already provide lawful interception interfaces
to government agencies [2], and that they store user’s data according to their local laws,
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Figure 4.2: The software architecture of a single cellpot consists of two environments;
The firmware environment and an infrastructure environment. Only the
infrastructure environment is allowed access to cryptographic keys and the
Ethernet port. A modern microkernel ensures isolation between the two
environments, which are implemented with virtual machines.

we believe that in practice our cellpot will not create legal issues for MNOs during
deployment.

4.3 Making cellpot resilient against firmware attacks

As discussed in Sec. 3.1, femtocell devices have security vulnerabilities which may allow
an attacker to compromise the femtocell without significant effort, and therefore gain
access to the mobile network. Even more concerning is that a single compromised cellpot
could poison the whole cellpot P2P network, which could then no longer be trusted. To
that end we propose to harden femtocells against rooting by logically partitioning them
into two isolated environments. Both environments have separate distinct duties and
access distinct pieces of hardware. We call one firmware environment (FE), and the
second one infrastructure environment (IE). This setup is illustrated in Figure 4.2.
The FE has access to the radio hardware and is equipped with a virtual network device.

It does not have access to the Ethernet device. We move the entire original firmware
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into the FE. The firmware takes care of software defined radio and voice encoding. It
uses the virtual network device to communicate with the core cellular network. The FE
also hosts the configuration interface. It boots and operates from a virtual disk. The IE
in turn has access to the Ethernet port and the flash disk. In particular, its duties are:

• Establishing the link to the core network, using IPSec or similar technology. The
key material needed for the link is either hosted directly inside the IE, or in a
smart card (e.g. SIM card) that is accessible to the IE exclusively.

• Establishment of a virtual network link to the FE.

• Hosting of the cellpot infrastructure, including its control link and P2P network.

• Establish a virtual disk to host the FE.

• Reset, update, start and stop the FE.

We require the IE to be booted using secure boot. By isolating both environments
we assure that rooted firmware can be controlled, e.g. by taking the whole femtocell
offline or by resetting the firmware environment. Furthermore the attacker cannot access
cryptographic keys or tamper with the cellpot infrastructure. It also solves the problem
of costly and time consuming software updates: Certification and validation of the radio
stack has to be done only on new firmware versions. Without the costs involved with
radio certification and validation, updating and extending the honeypot software can be
done frequently.
Contemporary femtocells contain cheap system-on-chip (SoC) components that typi-

cally consist of a low power ARM9 core clocked at about 160Mhz and about 64 to 128MB
RAM. Currently, these SoCs do not have TrustZone capabilities. Lange et al. showed
that virtualization of complex systems like Android is possible on similar embedded sys-
tems with the help of a microkernel [17]. Consequently we suggest an implementation
using a modern microkernel such as Fiasco.OC as basis, with the partitions being estab-
lished by virtual machines, similar to the design by Liebergeld et al. [20]. ARM9 and
the small amount of memory of current femtocells do not lend themselves to such a sys-
tem. A system with a Cortex-A9 CPU and about 256MB of RAM enables a performant
platform for our software. We argue that the little increase in the total bill of materials
is well worth the increase in security.
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5 Anomaly Detection of Attacks in

Femtocells

This chapter is concerned with the detection of anomalous events in a mobile network
that deploys the cellpot concept described in the previous chapter and contains several
femtocells. Throughout the chapter we will describe a series of increasing complexity
anomaly detection algorithms and test their efficacy for detecting compromised femto-
cells in a simulated mobile network. In contrast to D4.2 where our target was to detect
compromised UEs, in the current deliverable we want to detect compromised femtocells
on which several UEs can be connected to. Although the bibliography on anomaly de-
tection is vast, the algorithms we have used cover the most important classes of available
methods. The first algorithm we use is Cumulative Sum (CUSUM) [23, 4] which is a fast
algorithm with a long history in the detection of abrupt changes in several scientific and
engineering applications [35],[34]. A more recent method that we describe and evaluate
in this chapter is Local Outlier Factor (LOF) [7], which detects anomalous measure-
ments exploiting the local deviation of a measurement with respect to its neighbours.
Furthermore, a more complex and general algorithm that we experiment with is Hidden
Markov Model (HMM) [26]. It has been successfully used for time series analysis [21]
similarly to our field of application and in several other multidisciplinary domains as a
generic machine learning framework [24],[33], [25].
Since all the previous methods require a supervised training phase and are applied

on each femtocell separately neglecting the global structure of the network, we also
implemented and tested the Bayesian Robust Principal Component Analysis (BRPCA)
[8]. BRPCA is an unsupervised algorithm that exploits the temporal correlation of
measurements across different femtocells of the same network and factorizes a global
measurement matrix in a low rank and a sparse component, where each column of these
matrices corresponds to a single femtocell. Non zero entries on each column of the
sparse component point out anomalous events on the respective femtocell. Similarly to
our application domain BRPCA has been successfully applied on a network of traffic
sensors [36] for the detection of anomalous conditions in vehicular traffic.
The following sections describe in much greater detail each method along with any

algorithmic choices we made with our experimental setup in mind. Moreover, we describe
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briefly the simulated mobile network along with the type of measurements that we use.
The chapter concludes with the evaluation of the presented algorithms and the findings
of our experiments.

5.1 Cumulative sum based detection

The CUSUM test has been proven effective for the detection of DoS attacks [10]. The
rationale behind CUSUM is that during an anomalous event, it is expected that several
consecutive irregular measurements will arise. CUSUM aggregates these discrepancies
in consecutive measurements and if a certain threshold is exceeded signals an anomaly.
Assuming we have N time bins, the basic equation underlying CUSUM is:

cj = cj−1 +max{0, dj} , j ∈ {1, . . . , N}

c0 = 0
(5.1)

where cj is the anomaly score and dj is the discrepancy of the measurements in time
bin j. To capture the seasonality of the features, where under normal conditions the
measurements have a 24 hours period, the discrepancy dj is defined as,

dj =

P∑

k=1

yjk − ȳjk

σjk
(5.2)

where P is the number of different features, ȳjk denotes the mean value of feature
type k during the time of the day where time bin j corresponds to, and σjk its standard
deviation. To compute the mean and the standard deviation, a training phase is required
where the respective features of a femtocell under normal conditions are recorded.
According to Equation 5.1 there is no resetting mechanism and if an anomaly occurs

where the anomaly score cj is high, it will continue to have high values even if network
conditions are restored. To remedy this fact if the discrepancy dj is low for a number of
consecutive measurements we reset cj to a regular average value. This number is set to
5 for our experiments.

5.2 Local outlier factor based detection

The LOF [7] method measures the outlier-ness of the measurements by examining their
sparsity compared to other normal instances. LOF uses all the measurements at a given
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time instant simultaneously, therefore we define feature matrix Yi for femtocell fi as

Yi =








ψ1

ψ2
...
ψN








(5.3)

where each row ψj ∈ R
P contains the measurements for every feature during time bin

j. Moreover, LOF requires a training set T,

T =








τ1
τ2
...
τL







. (5.4)

Initially LOF finds the k nearest neighbours of ψj and computes its reachability distance
from the training set according to:

rk(ψj , τm) = max{k − distance(τm), d(ψj , τm)}. (5.5)

Specifically, the reachability distance of ψj from τm is in general the true distance of
the two, but if they are close it is equal to distance of the k-th nearest neighbour of τm.
Subsequently the local reachability density of ψj is computed as

lrd(ψj) =
|Nk(ψj)|

∑

τm∈Nk(ψj)
rk(ψj , τm)

(5.6)

where Nk(ψj) denotes the k nearest neighbours of ψj and || denotes the cardinality of a
set. Finally, the anomaly score LOF (ψj) is defined as

LOF (ψj) =

∑

τm∈Nk(ψj)
lrd(τm)
lrd(ψj)

|Nk(ψj)|
=

∑

τm∈Nk(ψj)
lrd(τm)

|Nk(ψj)|lrd(ψj)
(5.7)

which is the average local reachability density of the neighbors divided by the local
reachability density of ψj . A value of approximately 1 indicates that ψj is comparable
to its neighbours and thus not an outlier. A value below 1 indicates a denser region
which would probably be an inlier, while values significantly larger than one indicate
outliers.
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5.3 Hidden Markov model based detection

HMM is a popular Markovian technique that has been widely applied for anomaly de-
tection [15], [10]. The proposed anomaly detection method is based on an Continuous
Density HMM (CDHMM) [26] and consists of two steps: a) the training step, where
matrix T of Equation 5.4 is used to train the HMM, and b) the evaluation step, where
the HMM computes the anomaly score for every time instant for femtocell fi using the
measurement matrix Yi defined in Equation 5.3.
For the training of the model the Viterbi, the Baum-Welch algorithms [26], [6] and

their combination were considered. Based on testing the Baum-Welch algorithm was
selected since it performed better. Additionally, in all training cases the distribution of
the initial probabilities was set to be uniform. The intuitive explanation for this is that
each state corresponds to a specific time of the day and thus it is equally possible for an
observation sequence to begin with each state.
To evaluate the anomaly score the trained HMM were used to compute the probability

of an observation matrix. This can be written as P (Yi|λ), where λ are the parameters
of the model learned in the training phase. In order to compute this probability the
forward part of the forward-backward algorithm is used as outlined in [26],[5].

5.4 Bayesian robust principal component analysis based

detection

Another algorithm we implemented to detect anomalous events in a femtocell network
is BRPCA [8]. BRPCA is based on the linear dependency of the measurements across
different femtocells of the network. The underlying rationale is that the utilization of
each femtocell will variate in a similar fashion compared to the others during the course
of a day. The biggest advantage of BRPCA compared to the previous algorithms is that
it does not require any training as it exploits the global structure of the measurements.
The input of BRPCA is a matrix Y referring to a single feature type for the entire
network. Concretely, the input matrix Y ∈ R

M×N is

Y =
[
y1 . . . yM

]
(5.8)

where M is the number of femtocells and N is the number of time bins. Each element
corresponds to a single measurement. For example, in our case element yij is the number
of premium SMSs sent by femtocell fj in time bin i.

Although numerically Y will have full rank due to small perturbations across different
femtocells, in reality its columns are linearly dependent and its actual rank is much

33



lower. The reason for this attribute is that under normal circumstances the number of
premium SMSs sent from the UEs in a femtocell fluctuates similarly for all femtocells
in the course of a day. It should be noted that linear dependence models both the case
where the number of premium SMSs is approximately constant across different femtocells
and also the case where its proportional when femtocells have different capacity. Under
this assumption Y can be written as:

Y = L+E (5.9)

where L corresponds to the low rank component of Y and E models small magnitude
perturbations.
A common method to recover the low rank matrix L is Principal Component Analysis

(PCA) [14], [6] computed using Singular Value Decomposition (SVD) [28]. Initially, by
applying SVD, Y is decomposed as

Y = DΛWT =
r∑

i=1

λidiw
T
i (5.10)

where diagonal matrix Λ ∈ R
r×r contains the singular values of Y sorted in descending

order, D =
[
d1, . . . ,dr

]
∈ R

M×r and W =
[
w1, . . . ,wr

]
∈ R

r×N contain the left
and right singular vectors respectively and r is the rank of Y. To extract the low rank
component L singular values close to zero and the respective singular vectors are ignored
and L is computed as

L =
r′∑

i=1

λidiw
T
i (5.11)

where r′ is the number of singular values exceeding a predefined threshold ǫ close to zero
and is also equal to the rank of L. If the linear assumption on the observation vectors
y1, . . . ,yM holds it is anticipated that:

r′ ≪ r ≤ min{M,N}. (5.12)

In a femtocell network traditional PCA will readily recover the low rank matrix L
from the observation matrix Y in the absence of any anomalous events. However, if a
femtocell is attacked and for example starts sending malicious premium SMSs the lin-
earity assumption is violated and PCA collapses since arbitrary magnitude observations
can change dramatically the singular values and vectors of the observation matrix even
if they correspond to a small percentage of the elements in the observation matrix. On
the other hand, in order to detect attacks on femtocells it is crucial to recognize and

34



isolate any anomalous observations. To accomplish this task we model the observation
matrix as

Y = L+ S+E (5.13)

where as before matrices L ∈ R
M×N ,E ∈ R

M×N correspond to the low rank and the
noise component, whereas S ∈ R

M×N is a sparse matrix representing anomalous events
that cause an arbitrary increase in the observations.
To recover the terms of Equation 5.13 the Bayesian model used by BRPCA is

Y = DXΛW
︸ ︷︷ ︸

L

+B ◦X
︸ ︷︷ ︸

S

+E. (5.14)

The low rank component L is modeled as

L = D(ZΛ)W (5.15)

where Z is a (K × K) diagonal matrix with binary entries, Λ ∈ R
K×K is a diagonal

matrix, D ∈ R
M×K , W ∈ R

K×N and the parameter K corresponds to the largest
rank that can be inferred for L. The decomposition of Equation 5.15 is similar to SVD,
however the matrix corresponding to the singular values is ZΛ instead of a single matrix.
This permits BRPCA to decouple rank learning for singular value learning. The rank of
L is inferred from Z and is set equal to ‖Z‖0, while the magnitude of the singular values
is deduced from Λ. The sparse component is factorized as

S = B ◦X (5.16)

where ◦ denotes Hadamard (pointwise) product. Notice again that the proposed model
separates the learning of sparseness from the learning of values, such that the zero
component in S is exactly zero.
To recover the matrices of Equation 5.14, BRPCA applies a Markov Chain Monte

Carlo scheme in order to perform posterior inference. Further details of the algorithm
can be found in [8].

5.5 Experimental setup

The mobile network used simulates an area of size 5 km by 5 km, covered by 7 macrocells
and 13 femtocells distributed within the area. Macrocells have a large range (> 1 km)
and none of them are compromised. The femtocells have a range of 50 m or 20 m and
depending on the scenario of each experiment two or none of them are compromised.
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The mobile devices move within the boundaries of the simulated area following a ran-
dom waypoint mobility model, which has been modified to enable UEs to preferentially
move to areas covered by femtocells. At the start of the simulation, all UEs are ran-
domly distributed in the area. Each UE then selects a random location in the area
and a random speed and proceeds to move to its chosen destination. When it reaches
the destination, the UE waits for a random amount of time and then repeats this pro-
cess. Moreover, each area covered by a femtocell has a rectangular “attraction” area
and an attraction probability pa , i.e. when a UE selects a random destination, it has
a probability of pa of choosing attractor a. The total probability of a UE selecting any
of the femtocells in the area is then pa , where a ∈ F and F is the set of femtocells
in the scenario. If the UE does not select any of the femtocell areas, then it proceeds
with the normal destination selection process. Since the “normal” selection process is
unaware of attractor areas, the UE may or may not select a femtocell area in this stage.
If the UE selects a femtocell area as its destination, then the amount of time it waits is
chosen from a different probability distribution specific to that femtocell. Note that as
a UE is moving across the simulated area to its destination, it may enter and then exit
femtocell areas. Every time the UE attaches to a new macrocell or femtocell, the cell id
is recorded in a simulation file. The generation and reception of SMS messages by UEs
in the network are also recorded in the same file.
Three snapshots of such a file are illustrated in Figure 5.5. In Figure 5.1(a) the

numbers underlined with blue correspond to the unique indices of the UEs, the numbers
with green to the respective vector indices, whereas with red are underlined the types of
the vectors. Therefore the first line refers to UE 9999 and informs us that vector 79999
contains the cells that it was connected to during the simulation. The contents of vector
79999 are depicted in Figure 5.1(b) where the second column contains a unique event
index, the third refers to the time instant the UE connected to a new cell and fourth
column refers to the cell index. Similarly, vector 75848 concerns UE 9841 and records
the destination addresses that this UE sent an SMS to. The contents of vector 75848
are illustrated in Figure 5.1(c) where the second and third column correspond again to
the event index and time instant of the event, whereas the fourth column contains the
destination address of the SMS. Using the destination address we can infer whether an
SMS is premium or not. The third highlighted line of Figure 5.1(a) informs us that
vector 29649 records the incoming SMS to the UE with index 3706.
Since our goal is to detect femtocell attacks, we are not interested on the behaviour

of single UEs but instead we have to combine the information of the respective vectors
in order to extract features that refer to a femtocell. Initially, we divide the time period
of the simulation in constant time bins of 1800 seconds. At each time bin we extract
the UEs connected to a specific femtocell and measure the number of incoming and
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(a) We highlight with green the measurement vector index, with blue the UE index and with
red the measurement type.

(b) Vector 79999 contains a column of event indices
(2nd), a column of time instants (3rd) and a column
with the cells UE 9999 was connected to.

(c) Vector 75848 contains a column of event indices
(2nd), a column of time instants (3rd) and a column with
the destination indices UE 9481 sent SMSs to. Premium
SMSs are identified by the destination index.

Figure 5.1: Format of a simulation file. There are three different kind of vectors con-
cerning the cells a UE was connected to, the SMSs it sent and the SMSs it
received.
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outgoing SMSs as well as the number of premium SMSs sent. Therefore, assuming that
the network contains M femtocells {fi}i=1...M and the simulation extends N time bins,
feature matrix Yi arises for femtocell fi,

Yi =
[
yi1 yi2 yi3

]
(5.17)

where Yi is an (N × 3) matrix. Columns yi1, yi2 and yi3 correspond to the number
of incoming, outgoing and premium SMSs in fi during the simulation. These feature
matrices {Y1, . . . , YM} are the input to the LOF, CUSUM and HMM methods. The
BRPCA uses a single feature type (number of premium SMS) and the input of the
algorithm is the feature matrix of Equation 5.8.

5.6 Experimental evaluation on various attack scenarios

The efficiency of the presented algorithms is demonstrated under several different attack
scenarios that cover a wide range of attacks that can occur in a real network . In the first
series of experiments the UEs are active 24 hours a day while in the second series the
UEs have a diurnal cycle and are active for between 14 to 16 hours per day. When the
UEs are operating according to a diurnal pattern, the UEs are immobile during their
inactive period. Each series of experiments consists of five different scenarios where
different values for two parameters of the simulated network are considered.
The first parameter denoted as premProb is the probability that a UE sends a premium

SMS. The second parameter concerns the attack type and can have three different values.
The first value is “no attack”. The second one is “periodic” where the compromised
femtocells send premium SMS periodically. In particular a UE sends 1 premium SMS
every hour as long as it is connected to a compromised femtocell. The third attack
type is “bursty” where a compromised femtocell generates and sends a burst of premium
SMSs (1 up to 4), once at/near attach time of a UE.
In the experiments where an attack occurs femtocells f3 andf12 are compromised

so anomalies should be detected on them. For each simulation scenario we provide
two different types of diagrams for each method. The first type depicts the anomaly
score for each femtocell at each time bin using a jet colormap. This colomap will use
the range of the measurements and assign blue to the lowest and red to the highest.
However, one should keep in mind that red entries can correspond to small score in
terms of absolute value. In case of an attack we expect many red entries concentrated
on the columns corresponding to femtocells f3 and f12. For BRPCA the anomaly score is
equal to the absolute value of matrix S in Equation 5.13. The second type of diagrams
demonstrate the accumulated anomaly score for each femtocell per day. No attack
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.2: Anomaly scores for all femtocells throughout the simulation for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.01 and devices are active 24 hours a day. Some sporadic
fluctuations appear. BRPCA is more stable compared to the others.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.3: Aggregated per day anomaly scores of the femtocells for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.01 and devices are active 24 hours a day. Notice the small
discrepancies of CUSUM and LOF. The respective score of BRPCA is close
to zero.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.4: Anomaly scores for all femtocells throughout the simulation for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.1 and devices are active 24 hours a day. As premProb has
increased, the anomaly score fluctuates more heavily around zero.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.5: Aggregated per day anomaly scores of the femtocells for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.1 and devices are active 24 hours a day. Notice the signifi-
cant increase of the error score for CUSUM. However, by setting a relatively
high threshold no false anomalies will be detected. LOF and BRPCA are
still stable.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.6: Anomaly scores for all femtocells throughout the simulation for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.01 and devices have a diurnal cycle. More entries are zero
with some minor exceptions that are still close to zero.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.7: Aggregated per day anomaly scores of the femtocells for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.01 and devices have a diurnal cycle.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.8: Anomaly scores for all femtocells throughout the simulation for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.1 and devices have a diurnal cycle. Notice that the anomaly
score for BRPCA is practically zero compared to the other methods, where
some minor fluctuations occur.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.9: Aggregated per day anomaly scores of the femtocells for the CUSUM,
LOF, HMM and BRPCA algorithms respectively when no attack occurs,
premProb = 0.1 and devices have a diurnal cycle. As the probability of
premium SMSs increased, more non zero anomaly scores arise.
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scenarios are illustrated in Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9. The stability of
the BRPCA method is of special interest although no spurious alarms are raised by any
of the other methods. This stability is attributed on the global view that BRPCA has on
the data. CUSUM is the most unstable because small fluctuations on the measurements
get accumulated over time, while both LOF and HMM perform equally well.
Cases of “bursty” attacks are shown in Figures 5.10, 5.11, 5.12 and 5.13 where all

methods can identify that femtocells f3, f12 are compromised. Among the evaluated
methods BRPCA and HMM are the most stable. It should also be noted that although
CUSUM detects the compromised femtocells it does not have a constant anomaly score
for the anomalous measurements. Its anomaly score is increasing over time as discrep-
ancies are accumulated. This is evident in the jet colomap plots where the color of
the columns of the compromised femtocells varies smoothly from blue to red over time.
Moreover, when femtocells do not have a diurnal cycle the anomaly curves per day for
CUSUM are different since the anomaly score of Equation 5.1 is never reset. The HMM
algorithm performs well and the anomaly scores for the compromised femtocells have
very high values.
Scenarios of periodic attacks are illustrated in Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19,

5.20 and 5.21. Again all methods perform well, however LOF has some small instabilities
in the case of Figures 5.14 and5.15. It is also worth commenting on the depiction of the
diurnal cycle of the attacks in the corresponding figures. The anomaly matrices have on
the columns of the compromised femtocells low values depicted as blue entries during the
time of inactivity, followed by red entries when devices are active. All methods perform
well and compromised femtocells can easily be detected. We should point out that the
blue stripes in the case of HMM that are shown in Figures 5.14, 5.16, 5.18 and 5.20
for the compromised femtocell f12 are due to very big anomaly scores that affect the
scaling of the colormap. The HMM algorithm works very well as is shown in the per
day diagrams.
The methods we presented in this chapter are indicative of broader families of anomaly

detection algorithms, ranging from simple control charts to more sophisticated machine
learning methods. In general the tested algorithms can accurately detect compromised
femtocells. However CUSUM is not as accurate and stable as the others. On the other
hand particularly encouraging is the performance of BRPCA which is the most stable
method and in addition does not require any training. Moreover, the HMM algorithm
works very well but requires a cumbersome training phase and more than twice the
computational time which can be a significant drawback for larger networks.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.10: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively under a bursty
attack, with premProb = 0.01. The devices are active 24 hours a day.
Notice the high values on columns 3 and 12 corresponding to the compro-
mised femtocells. In the case of CUSUM the color in these columns varies
smoothly from blue to red as discrepancies are constantly accumulated.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.11: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively under a bursty attack with
premProb = 0.01. The devices are active 24 hours a day. The curves for
BRPCA are nearly identical for all days. The anomaly curves for CUSUM
have higher values every day as discrepancies accumulate over time for the
compromised femtocells.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.12: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively under a bursty
attack with premProb = 0.01. The devices have a diurnal cycle and this
is depicted in the diagram where only periodic blocks of the columns cor-
responding to compromised femtocells have a high value. Notice again the
stability of BRPCA.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.13: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively under a bursty attack with
premProb = 0.01. The devices have a diurnal cycle and all methods per-
form very well.

51



(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.14: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively when a peri-
odic attack occurs, premProb = 0.01 and devices are active 24 hours a day.
Notice the sporadic instabilities of LOF.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.15: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively when a periodic attack occurs,
premProb = 0.01 and devices are active 24 hours a day. CUSUM curve get
higher every day as no resetting of the anomaly score occurs. Also LOF has
some small instabilities. BRPCA continues to be pretty robust.

53



(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.16: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively when a peri-
odic attack occurs, premProb = 0.1 and devices are active 24 hours a day.
Notice some sporadic non zero entries for LOF in uncompromised femtocells.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.17: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively when a periodic attack occurs,
premProb = 0.1 and devices are active 24 hours a day. All methods perform
very well.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.18: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively when a peri-
odic attack occurs, premProb = 0.01 and devices have a diurnal cycle.
Notice the depiction of the diurnal pattern on the diagram.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.19: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively when a periodic attack occurs,
premProb = 0.01 and devices have a diurnal cycle. Notice the minor insta-
bilities of LOF.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.20: Anomaly scores for all femtocells throughout the simulation for the
CUSUM, LOF, HMM and BRPCA algorithms respectively when a peri-
odic attack occurs, premProb = 0.1. The devices have a diurnal cycle.
Again the diurnal pattern is depicted.
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(a) CUSUM (b) LOF

(c) HMM (d) BRPCA

Figure 5.21: Aggregated per day anomaly scores of the femtocells for the CUSUM, LOF,
HMM and BRPCA algorithms respectively when a periodic attack occurs,
premProb = 0.1 and devices have a diurnal cycle. All methods perform
well.
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6 Conclusions

In this document, we presented a review of the security vulnerabilities of femtocells and
discussed the femtocell-specific attack vectors due to potential exploitation of these vul-
nerabilities. Femtocell devices are critically situated for an attacker since they have easy
physical access to the device, which allows them to physically attack and compromise
the device. In addition, femtocell devices typically run on outdated open source soft-
ware, which make them vulnerable to exploitation attacks. Femtocell devices also run
a web server to allow easy configuration of the device, which introduces another attack
vector that can be exploited by an adversary in order to compromise the device due to
insufficient isolation of the device components. Furthermore, due to the vulnerabilities
of the femtocell security architecture, a compromised femtocell device allows (almost)
direct access to the end-users and the mobile services of the operator, making femtocells
an attractive target.
Once a femtocell is compromised, the attacker can launch attacks against the end-user,

such as interception and DoS attacks (Sec. 3.2), or attacks against the mobile network,
including signaling attacks (Sec. 3.3). In order to monitor femtocells for anomalies which
may arise due to compromised devices and other factors, and to enable anomaly detec-
tion and mitigation against identified attacks, we propose the concept of the cellpot
(Chp. 4), which is comprised of femtocell-based honeypots connected via a peer-to-
peer network that allows the distributed sharing of information regarding anomalies
among the cellpots, and enabling distributed anomaly detection and control for defend-
ing against identified attacks. In order to improve the security of the femtocell device
against attacks exploiting vulnerabilities in the firmware, we propose a software archi-
tecture for the femtocell that protects the core network even if the femtocell firmware is
compromised. This software architecture uses virtualization in order to separate the fem-
tocell device into two environments: the firmware and the infrastructure environments.
This separation allows us to protect the core network since only the infrastructure envi-
ronment has access to the cryptographic keys used for authentication and authorization,
and to the Ethernet port used to connect the device to the mobile network.

In order to fully realize the monitoring and protection of femtocells via cellpots, we
also investigated anomaly detection methods that will take as input the data collected
by the cellpots, e.g. via the honeypot gateway server, and analyze the femtocell data in
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order to identify any anomalies occurring in the femtocell architecture. In future stages
of this work, once an anomaly is identified and classified, defensive actions can be taken
via the cellpot in order to mitigate against the anomaly or attack. For example, if a
femtocell is identified as compromised, then mobile traffic to/from the femtocell can be
further scrutinized and filtered based on firewall-like rules in order to protect the core
network and the mobile users.
The anomaly detection methods we considered were based on the following: cumu-

lative sum (CUSUM), local outlier factor (LOF), hidden Markov models (HMM), and
Bayesian robust principal component analysis (BRPCA), which were chosen due to their
various advantages. For example, CUSUM is a computationally efficient and fast detec-
tion method, while HMM-based anomaly detection methods have been shown to provide
good detection performance after proper supervised learning. We evaluate these methods
using simulation data from mobile networks with compromised femtocells. In the eval-
uation scenario, we consider currently the most common malware type, premium SMS
messages, and apply the anomaly detection methods in order to identify the anomaly
and its source, i.e. which of the femtocells are compromised. Our results show that
all of the considered methods are able to detect the anomaly. However, we see that
despite its efficiency, CUSUM is the least stable and least accurate, while both HMM
and BRPCA are the most stable and have consistently good detection performance. We
recommend the use of BRPCA over HMM since BRPCA does not require supervised
training and is computationally more than two times faster than HMM, which makes
BRPCA an attractive candidate for anomaly detection in large scale mobile networks
with femtocells.
Future work in the security and protection of femtocells would need to consider ap-

propriate mitigation methods and how they can be integrated and realized with the
proposed cellpot concept. In addition, more in-depth performance analysis of anomaly
detection algorithms as implemented within the cellpot framework would be desirable
in order to evaluate whether they can be used in (near) real-time for anomaly detection
within femtocells.
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